莱文斯坦(Levenshtein)距离 莱文斯坦距离可以解决字符串相似度的问题。...在莱文斯坦距离中,对每一个字符都有三种操作:删除、添加、替换 例如有s1和s2两个字符串,a和b是与之对应的保存s1和s2全部字符的数组,i/j是数组下标。...莱文斯坦距离的含义,是求将a变成b(或者将b变成a),所需要做的最小次数的变换。...举个例子,字符串"kitten" 与“sitting” 的莱文斯坦距离是3,因为将kitten变为sitting,最少需要三次变换: 第一步 kitten -> sitten (字符k变成s) sitten...s,s4:%s:similar:%s' % (s3,s4,str(result))) #s3:kitten,s4:sitting:similar:0.6153846153846154 案例 计算两个字符串
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。...拓展与补充: 小规模的字符串近似搜索,需求类似于搜索引擎中输入关键字,出现类似的结果列表。 来源:.Net.NewLife。...要实现此算法,首先需要明确“字符串近似”的概念。 计算字符串相似度通常使用的是动态规划(DP)算法。 常用的算法是 Levenshtein Distance。...用这个算法可以直接计算出两个字符串的“编辑距离”。所谓编辑距离,是指一个字符串,每次只能通过插入一个字符、删除一个字符或者修改一个字符的方法,变成另外一个字符串的最少操作次数。...达到了二次方的规模(忽略距离计算时间)。 所以我们需要更高效的计算策略。在纸上写出一个句子,再写出几个关键字。一个一个涂画之后,偶然发现另一种字符串相关的算法完全可以适用。
编辑距离是指利用字符操作,把字符串A转换成字符串B所需要的最少操作数。...一般来说,两个字符串的编辑距离越小,则它们越相似。如果两个字符串相等,则它们的编辑距离(为了方便,本文后续出现的“距离”,如果没有特别说明,则默认为“编辑距离”)为0(不需要任何操作)。...形式化定义 问题描述 给定两个字符串A和B,求字符串A至少经过多少步字符操作变成字符串B。 问题解决 当其中某个字符串长度为0的时候,编辑距离就是另一个字符串的长度....NLP基本的度量文本相似度的算法,可以作为文本相似任务的重要特征之一,其可应用于诸如拼写检查、论文查重、基因序列分析等多个方面。...但是其缺点也很明显,算法基于文本自身的结构去计算,并没有办法获取到语义层面的信息。 由于需要利用矩阵,故空间复杂度为O(MN)。这个在两个字符串都比较短小的情况下,能获得不错的性能。
K近邻算法 度量距离 欧氏距离(Euclidean distance) 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在 m 维空间中两个点之间的真实距离,...在二维和三维空间中的欧氏距离就是两点之间的实际距离。...实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。...对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。..._{2}}{\sqrt{x_{1}^{2} + y_{1}^{2}} \times \sqrt{x_{2}^{2} + y_{2}^{2}}} 如果向量 a 和 b 不是二维而是 n 维,上述余弦的计算法仍然正确
拓展欧几里得算法与应用 欧几里得算法 即:gcd(a,b)=gcd(b,a%b)欧几里得算法在oi里非常常用,几乎每个数学题都有欧几里得算法——gcd。说白了就是求最大公约数。...a:gcd(b,a%b); } 拓展欧几里得算法 定理 定理1:设a和n不全为0,则存在整数x,y,满足ax+by=gcd(a,b)。证明:当b=0时,gcd(a,b)=a。...所以,bx’+ay’-(a/b)\times b \times y’=gcd(a,b)即,ay’+b\times (x’-(a/b)\times y’)=gcd(a,b)那么可以继续递归拓展欧几里得:x...因为欧几里得算法的递归过程,可知定理1成立。证毕。...b) d=a,x=1,y=0; else{ Exgcd(b,a%b,d,x,y); int tmp=x;x=y;y=tmp-(a/b)*y; } } 拓展欧几里得算法的应用
如果我们仅用一个变量,只有两种定义方法: dp(i) 返回 word1 下标为 i 时最短编辑距离。 dp(i) 返回 word2 下标为 i 时最短编辑距离。...对第一种定义,我们的目标是计算出 dp(word1.length-1),其中 dp(-1) 即 word1 从空字符串转换为 word2 需要的编剧距离显然是 word2.length,即把 word2...让我们再审视一下 dp(i,j) 的含义:除了返回最短编辑距离外,正因为我们知道了最短编辑距离,所以无论操作步骤、过程如何,都可以假设我们只要做了若干步操作,下标分别截止到 i、j 的 word1、word2...,那么空字符串如何转换为 word2,或 word1 如何转换为空字符串呢?...讨论地址是:精读《算法 - 编辑距离》· Issue #501 · dt-fe/weekly 如果你想参与讨论,请 点击这里,每周都有新的主题,周末或周一发布。前端精读 - 帮你筛选靠谱的内容。
什么是“编辑距离” ? “编辑距离”又称 Leveinshtein 距离,是由俄罗斯科学家 Vladimir Levenshtein 在 1965 年提出。...“编辑距离”是计算两个文本相似度的算法之一,字符串 X 和字符串 Y 的编辑距离是将 X 转换成 Y 的最小操作次数,这里的操作包括三种: 插入一个字符 删除一个字符 替换一个字符 例如: kitten...和 sitting 的编辑距离是3。
拓展欧几里得算法 解不定方程 ax + by = c ,可以使用拓展欧几里得算法。 首先解 ax + by = \gcd (a,b) ....拓展欧几里得算法 证明 ax + by = \gcd(a,b) 一定有解。 (a,b \neq 0) ....---- 拓展欧几里得算法用于求出 ax + by = \gcd(a,b) 的一组特解: ax_1 + by_1 = \gcd(a,b) 可转化为: bx_2 + (a \bmod b)y_2 = \gcd...可以据此写出拓展欧几里得算法。可以使用引用传值的技巧简化代码。...例如求 x' 的最小正整数解,可以发现 x' 任意加减 b 都是合法解,因此可以直接 ((x \bmod b) + b) \bmod b . ---- 拓展欧几里得算法还可以用于求解线性同余方程。
一、题目 1、算法题目 “给定两个单词,计算出单词1转换为单词2所最少操作数。” 题目链接: 来源:力扣(LeetCode) 链接:72....编辑距离 - 力扣(LeetCode) (leetcode-cn.com) 2、题目描述 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。...题目是序列的处理问题,一般带有“最少”“最多”“最大”“子序列”等可以一步步解决的字符串或数组问题,可以考虑用DP,2个序列的比较,用dp[i,j]二维数组; 2.再想DP数组的含义是什么,一般就是按问题描述
本文链接:https://blog.csdn.net/tkokof1/article/details/100709721 字符串编辑距离的简单实现 字符串编辑距离应该是动态规划中的代表问题了:...给定两个字符串 aaa 与 bbb,求解将 aaa 编辑至 bbb 的操作步数(距离),编辑包含以下两种操作: 删除某一字符 增加某一字符 (这里我们不允许变更某一字符,注意一下) 求解方法则是根据子问题的结果..."递推"出原问题的结果: 设字符串 aaa 的长度为 mmm, 字符串 bbb 的长度为 nnn, 我们定义问题 C(i,j)C(i, j)C(i,j) C(i,j)C(i, j)C(i,j) : aaa...的(前缀)子串(长度为 iii) 与 bbb 的(前缀)子串(长度为 jjj) 的字符串编辑距离.
# 最大最小距离算法的Python实现 # 数据集形式data=[[],[],...,[]] # 聚类结果形式result=[[[],[],...],[[],[],...],...] # 其中[]为一个模式样本...Z2加入到聚类中心集中 zs.append(data[index]) # 计算阈值T T = t * distance return T # 计算两个模式样本之间的欧式距离
前言 前导博文: 【AI】浅谈梯度下降算法(理论篇) 【AI】浅谈梯度下降算法(实战篇) 通过前导博文的学习,想必大家对于梯度下降也有所掌握了,其中在 【AI】浅谈梯度下降算法(实战篇) 博文中有粗略的提到过梯度下降的三大家族...为了解决这个问题,随机梯度下降算法被提出。...所以算法停下来的参数值肯定是足够好的,但不是最优的。 当成本函数非常不规则时,随机梯度下降其实可以帮助算法跳出局部最小值,所以 相比批量梯度下降,它对找到全局最小值更有优势 。...为了解决批量梯度下降的速度太慢以及随机梯度下降方差变动过大的情况,一种折中的算法--小批量梯度下降算法被提出,其从全部样本中选取部分样本进行迭代训练。...是 快 ≥\geq≥2 是 参考: 不同梯度下降算法的比较及Python实现 利用python实现3种梯度下降算法
原理推导 令空间中点A与点B组成向量 \overrightarrow{AB} ,向量外有一点P,那么我们要求的就是P与直线 \overrightarrow{AB} 的距离d。...参考 空间向量如何求点到直线距离? 立体几何:如何用空间向量方法求点到直线的距离? 向量运算(叉乘几何意义)
比如从空字符串""到字符串"hello",需要多少步呢?显然需要5步,因为一直加字符就好了。 那么从字符串"hello"到空字符串"",需要多少步呢?...我们定义状态dp(i,j)为:字符串s1(0,i)变成字符串s2(0,j)所需要的步数。...那么必有状态转移方程: dp(i,j) = min(插入,删除,替换,相等) 假设s1(0,i) 是字符串str1c,s2(0,j)是字符串str2d 删除:dp(...y : x; } /* dp(i, j) 定义:字符串s1 0到i 与 字符串s2 0到j 之间的距离 也就是:s1(0, i) s2(0, j)之间的距离 */ int minDistance(char
字符换相关的拓展在书中有非常详细的介绍,我这里仅记录一些可能会用到的函数或方法,以备后用。...str.includes('ello')); console.log(str.startsWith('hello')); console.log(str.endsWith('world')); includes 判断字符串中是否包含某个子字符串...startsWith 判断字符串开头是否包含某子字符串。 endWith 判断字符串结尾是否包含某子字符串。...字符串长度填充补全 console.log('0000008E'.padStart(10, '0x')); console.log('x'.padEnd(10, '0')); 可以让某字符串按规定长度显示...字符串与变量拼接(模板字符串) ES5 字符串拼接使用加号: for (var i = 0; i < 100; i++) { console.log('活到 ' + i + ' 岁'); } 在 ES6
于是就大概写了一下这篇文章,大致涵盖了我所知的全部字符串相似度比较的方法,大致包括: 汉明距离 最长公共子串 编辑距离 jaccard距离 bleu & rouge & …… …… 下面,我们来一个个考察一些这些内容...汉明距离 汉明距离(Hamming Distance)算是计算文本相似度的最简单的方式,他考察的是等长的字符串之间的距离,其具体定义就是两字符串之间不相同字符的个数。...而编辑距离(edit distance)则对这一点进行了优化,他的定义是: 将字符串(s1)通过下述三种变换方式转换为另一个字符串(s2)所需要的最少操作次数: 插入 删除 替换 他的算法实现和最长公共子串的算法实现有一定的雷同...,那么bleu、rouge等指标也可以用于评估两个字符串之间的距离。...总结 综上,我们可以整理出字符串相似度比较的一些常用方法如下: method 定义 算法复杂度 特点 hamming distance 两等长字符串中不同字符的个数 O
参考链接: 最小最大算法 #include #include #include #include #include <cstring...C 0.5 int main() { int x[100][3],z[100][3],b[100];//x[][]:输入点坐标;z[][]:标记第几个聚类中心;w[][]用于标记各点到聚类中心距离最小值... int i,j,h,N,flag,k=1,f=1;//f:聚类中心个数 ;b[]用于记录与聚类中心最大距离的点标号;dd[][]:在循环体中记录各点与聚类中心距离 float w...100],dd[100][100],Q,max1,max2,distance[100];//distance[]:记并求出录第二个聚类点 b[0]=0; printf(" 最大最小距离分类法...=0) { for(j=0;j<=f;j++) { printf("各点到各聚类中心距离为\n"); for(i=
1、欧几里得距离(Euclidean Distance) 欧氏距离是最常见的距离度量,衡量的是多维空间中各个点之间的绝对距离。...,然后计算欧式距离: 2、明可夫斯基距离(Minkowski Distance) 明氏距离是欧氏距离的推广,是对多个距离度量公式的概括性的表述。...公式如下: 当p==1,“明可夫斯基距离”变成“曼哈顿距离” 当p==2,“明可夫斯基距离”变成“欧几里得距离” 当p==∞,“明可夫斯基距离”变成“切比雪夫距离” 3、曼哈顿距离...6、海明距离(Hamming distance) 定义:在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。...场景:在海量物品的相似度计算中可用simHash对物品压缩成字符串,然后使用海明距离计算物品间的距离 二、相似度度量(9种) 相似度度量(Similarity),即计算个体间的相似程度,与距离度量相反
Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致。...该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式。 ?...其中d[i-1,j]+1代表字符串s2插入一个字母,d[i,j-1]+1代表字符串s1删除一个字母,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项...算法实现(Python): 假设两个字符串分别为s1,s2,其长度分别为m,n,首先申请一个(m+1)*(n+1)大小的矩阵,然后将第一行和第一列初始化,d[i,0]=i,d[0,j]=j,接着就按照公式求出矩阵中其他元素...,结束后,两个字符串之间的编辑距离就是d[n,m]的值,代码如下: #!
简述 ** OWD(One Way Distance)**算法也是一种描述两个路径之间相似度的方法,最早大概提出于06年左右。...最朴素的OWD算法的思路也非常简单,就是把路径之间的距离转化为点到路径的距离再加以处理。这里只对这种算法做简要介绍,至于深层次的理论有空再研究论文。...定义 在定义路径间的距离D_{owd}之前,我们先定义点到路径的距离D_{point}: 对于点 和一个由多个点组成的路径 ,定义他们之间的距离为 D_{point}(p,T)=min_{q \in...T} D_{Euclid}(p,q) 其中D_{Euclid}(p,q)表示p.q之间的欧式距离。...小结 从OWD距离计算的方式就可以看出,他能够很好的对不同长度的路径间距离进行归一化,而且对于噪声敏感度比较低。
领取专属 10元无门槛券
手把手带您无忧上云