我们定义几个固定大小尺寸的窗口,从照片的左上角开始扫描。扫描出来的图像做二分类,判断是北京还是人物(文字)。然后根据图像处理的一些惯用手段做二值化、膨胀,使得文字区域连通。最终根据规则选择文本框就可以了,过滤那些规则不规整、宽度比高度小的矩形框框,剩下的就是目标文本框了。
针对识别图片中的文本信息识别,分为文本区域检测,之后是将文本区域的字符分割,分割以后开始进行字符识别。
Datawhale 零基础入门CV赛事-Task1 赛题理解 本章内容将会对街景字符识别赛题进行赛题背景讲解,对赛题数据的读取进行说明,并给出集中解题思路。
OCR是一项科技革新,通过自动化大幅减少人工录入的过程,帮助用户从图像或扫描文档中提取文字,并将这些文字转换为计算机可读格式。这一功能在许多需要进一步处理数据的场景中,如身份验证、费用管理、自动报销、业务办理等都显得尤为实用。现如今,OCR解决方案会结合AI(人工智能)和ML(机器学习)技术,以自动化处理过程并提升数据提取的准确性。本文将介绍该技术的前世今生,一览该技术的阶段性发展:传统OCR技术统治的过去,深度学习OCR技术闪光的现在,预训练OCR大模型呼之欲出的未来!
本次分享的背景是,Datawhle联合天池发布的学习赛:零基础入门CV赛事之街景字符识别。本文以该比赛为例,对计算机视觉赛事中,赛事理解和Baseline两部分内容进行解析,帮助大家更好地学习实践。同时进行了直播分享(今晚7点在阿里天池直播分享,录播上传后原链接可回看):
作者介绍: 数据平台部OCR+团队负责人。2008年毕业于中国科学院研究生院,主攻模式识别、计算机视觉、图像处理、以及深度学习等方向。读研期间曾在模式识别顶级期刊PAMI(IEEE Transactions on Pattern Analysis and Machine Intelligence)发表指纹识别相关论文。此前在腾讯优图团队从事图像处理(人脸识别)相关工作,现在属于腾讯技术工程事业群\数据平台部\OCR+团队,主要从事文字识别、图像语义理解等相关工作。 引言 OCR技术,通俗来讲就是从图像中
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。 什么是OCR? OCR英文全称是Optical Character Recognition,中文叫做光学字符识别。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项目了。比如汉
车辆检测跟踪模块 车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置最佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。 车牌定位模块 车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。 车牌矫正及精
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解。所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解。
感谢Liuruoze的EasyPR开源车牌识别系统。 EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。 相比于其他的车牌识别系统,EasyPR有如下特点: 它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。 跨平台 目前除了windows平台以外,还有以下其他平
文字是信息的重要载体之一。通过书写、印刷、电子设备等方式,文字可以被记录下来并传递给他人。文字也是语言的重要组成部分,人们可以通过文字来表达自己的思想、感情和意图。在信息化时代,文字仍然是最基本、最重要的信息传递方式之一,也有着其不可替代的优势,如:简短明了、方便快捷、易于编辑、可归纳整理等。
https://tianchi.aliyun.com/competition/entrance/531795/introduction(阿里天池-零基础入门CV赛事)
车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于OpenCV编写Python代码来完成这一任务。
作者 | Fedor Borisyuk,Albert Gordo,Viswanath Sivakumar
文字,一种信息记录的图像符号,千年来承载了太多的人类文明印记。OCR,一种自动解读这种图像符号的技术,一直以来都备受关注。尤其在信息时代的今天,数字图像纷繁复杂,如何便捷高效的获取其中的文字信息,更有着重要的时代意义。作为模式识别领域最为经典的研究热点之一,OCR经历了长时间的发展变化,各种新技术、新方法、新应用层出不穷。 OCR技术的过去和现在: OCR(光学字符识别技术),是通过扫描仪或相机等光学输入设备获取纸张上的文字、图片信息,利用各种模式识别算法对文字的形态结构进行分析,形成相应的字符特征描述
EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。
OCR(optical character recognition)文字识别是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,然后用字符识别方法将形状翻译成计算机文字的过程;即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题。衡量一个OCR系统性能好坏的主要指标有:拒识率、误识率、识别速度、用户界面的友好性,产品的稳定性,易用性及可行性等。
一个开源的中文车牌识别系统, Git地址为:https://github.com/liuruoze/EasyPR。 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思。我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术、计算机图形学、机器学习等。我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源;2.我希望有人能够一起协助强化这套系统,包括代码、训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等。 相比于
怎么算呢?趁着高数知识还没忘完,赶紧拿起纸演算起来。大部分人是这么做的。但是如果现在跟你说,可以用 AI 来做,你信吗?
选自arXiv 作者:Tailing Yuan等 机器之心编译 参与:刘晓坤、李泽南 文字识别一直是图像处理领域中的重要任务。近日,清华大学与腾讯共同推出了中文自然文本数据集(Chinese Text in the Wild,CTW)——一个超大的街景图片中文文本数据集,为训练先进的深度学习模型奠定了基础。目前,该数据集包含 32,285 张图像和 1,018,402 个中文字符,规模远超此前的同类数据集。研究人员表示,未来还将在此数据集之上推出基于业内最先进模型的评测基准。 资源链接:https://ct
注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献
车牌识别系统可以自动检测并识别图像中的车辆牌照,其算法主要包括牌照定位、牌照分割、字符识别等步骤。本文将给出一种基于深度学习的车牌识别系统方案。
自然场景下的文字检测与识别是近年来的热点研究方向之一,也是很多计算机视觉技术实现应用时的重要步骤。相较于技术已经相对成熟的打印文档文字识别,自然场景中的文本识别仍具困难,比如文字的呈现可以有多种方向、多样的颜色和字体等,这些情况都为文字检测与识别技术在现实生活中的应用带来了挑战。
AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索、推荐、广告、风控、智能调度、语音识别、机器人、无人配送等多个领域,帮助美团3.2亿消费者和400多万商户改善服务和体验,帮大家吃得更好,生活更好。
近年来,移动互联、大数据等新技术飞速发展,倒逼传统行业向智能化、移动化的方向转型。随着运营集约化、数字化的逐渐铺开,尤其是以OCR识别、数据挖掘等为代表的人工智能技术逐渐深入业务场景,为用户带来持续的经济效益和品牌效应。图书情报领域作为提升公共服务的一个窗口,面临着新技术带来的冲击,必须加强管理创新,积极打造智能化的图书情报服务平台,满足读者的个性化需求。无论是高校图书馆还是公共图书馆,都需加强人工智能基础能力的建设,并与图书馆内部的信息化系统打通,优化图书馆传统的服务模式,提升读者的借阅体验。
本项目通过对拍摄的车牌图像进行灰度变换、边缘检测、腐蚀及平滑等过程来进行车牌图像预处理,并由此得到一种基于车牌颜色纹理特征的车牌定位方法,最终实现了车牌区域定位。车牌字符分割是为了方便后续对车牌字符进行匹配,从而对车牌进行识别。
雷锋网按:本文作者都大龙,2011年7月毕业于中科院计算技术研究所;曾任百度深度学习研究院(IDL)资深研发工程师,并连续两次获得百度最高奖—百万美金大奖;现在Horizon Robotics负责自主服务机器人、智能家居以及玩具方向的算法研究与开发,涉及深度学习、计算机视觉、人机交互、SLAM、机器人规划控制等多个领域。 深度学习独领风骚 人工智能领域深度学习独领风骚自2006 年Geoffery Hinton等在《科学》( Science) 杂志发表那篇著名的论文开始, 深度学习的热潮从学术界席卷到了工业
文档比对技术是一种用于比较两份文档之间差异的先进技术。具备较大的技术难点和场景价值。下面将对其技术难点和使用场景进行详细探讨。
1. 引言 OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。 在Windows 10通用应用程序UWP示例中,包含了OCR应用程序,具体请参考(https:/
Tesseract是一个开源的ocr(光学字符识别,即将含有文字的图片转化为文本)引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。
人工智能的飞速发展逐渐在取缔部分繁杂无用的工序,而移动端离线车牌识别也同样利用人工智能在结束代替人工手动录取车牌,深度学习算法的成果让工作生活更便捷。例如在传统的移动勘查中,工作人员遇到违规的车辆,都要站在路边一字一字、一辆一辆的去抄写车牌号码,虽然后来增加了移动设备,但是还是需要去手动录入车牌号码。如何利用一部手机搞定这个过程呢?
随着智慧城市愿景的推广,以及车辆管理需求的迅猛扩增,对于各类车辆识别系统有了新的要求。而以往的固定式特定设备的车牌识别系统已经不能够满足灵活的智能交通系统需求,例如路边停车管理和交管违章登记等。本文简单介绍一种基于Android平台的车牌识别技术,该技术不依赖其他任何第三方库,能够在复杂背景下迅速识别多种车牌。
OCR表面上看起来很简单。虽然计算机视觉领域已经存在了50多年,但研究人员还没有创建出高度准确的通用OCR系统,仍然有很长的路要走。
有小伙伴后台和小白说,能不能推荐几个适合入门的开源视觉项目,因为根据实际项目和代码学起来相对来说比较快。小白收集了一些比较简单的开源的项目,会陆陆续续的分享给大家,文末有源码地址。
随着社会经济的发展与汽车的日益普及带来巨大的城市交通压力,在此背景下,智能交通系统成为解决这一问题的关键。而在提出发展无线智能交通系统后,作为智能交通的核心,车牌识别系统需要开始面对车牌识别移动化的现实需求。基于实现车牌识别移动化这一目标,一种基于Android移动终端的车牌识别解决方案在Android平台上实现了该系统。
Tess4J是对Tesseract OCR API的Java JNA 封装。tesseract是跨平台的OCR(Optical Character Recognition,光学字符识别)引擎,让开发者非常容易的集成OCR能力到他们自己的应用。通过强大的API从图片中识别和提取文本内容。Tess4J支持主流的图片格式,如TIFF,JPEG,GIF,PNG,BMP,and PDF。 OCR(Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题,ICR(Intelligent Character Recognition)的名词也因此而产生。衡量一个OCR系统性能好坏的主要指标有:拒识率、误识率、识别速度、用户界面的友好性,产品的稳定性,易用性及可行性等。
近日浏览网上一些图片提取文字的网站,觉得甚是有趣,花费半日也做了个在线图片识别程序,完成了两个技术方案的选择,一是tesseract+python flask的方案实现,二是tesseract+spring web的技术解决方案,并简作论述,与君共勉。
车牌识别技术 是智能交通系统中的重要组成部分,它可以对车辆的行驶轨迹进行跟踪和记录,为交通管理提供重要的数据支持。
目前,我国警务通、停车场手持收费机等移动终端的使用比较普及,如果在这些终端上能够集成车牌识别功能,替代原来的手工记录,然后再人工录入电脑的步骤,让车牌的识别、记录工作变得快捷、便利、准确,会给业务人员带来很大的便利。现在出现一款基于Android、iOS平台的手机拍照车牌识别SDK,可方便的植入到警务通、手持收费机、掌上电脑、手机等手持终端上。
光学字符识别和手写文本识别是人工智能领域里非常经典的问题。OCR 很简单,就是将文档照片或场景照片转换为机器编码的文本;而 HTR 就是对手写文本进行同样的操作。作者在文章中将这个问题分解成了一组更小型的问题,并制作了如下的流程图。
文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号。光学字符识别(OCR)相信大家都不陌生,就是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程。
人们在社交网络上分享和获取信息的主要途径之一是视觉媒介,如照片和视频。近年来,上传至社交媒体的照片数量成指数级增长,每天可达数亿张 [27],处理日渐增多的视觉信息成为一大技术挑战。图像理解的挑战之一是从图像中检索文本信息,也叫光学字符识别(OCR),表示将包含键入、印刷或场景文本的电子图像转换成机器编码文本的过程。从图像中获取此类文本信息很重要,因为这可以促进很多不同的应用,如图像搜索和推荐。
OCR(Optical Character Recognition),译为光学字符识别,是指通过扫描等光学输入方式将各种票据、报刊、书籍、文稿及其它印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术。
前几天康耐视举行了一次线上分享会,主要是对2022年他们新产品的一些介绍和老产品的更新说明。我抽时间听了一下给我的感觉是康耐视现在基本上是在all in AI,他们传统的视觉算法和平台基本上没有太大的变化,但是在AI产品这一块丰富了很多。
在人机交互方面,大多人想到的都是语音交互,毕竟这是人类之间运用率最高的交流方式,且语音识别、自然语言理解等技术目前也发展的相当不错。 但是,我们也不得不忽视这样一个事实:我们每天都被文字所包围,像每天
在日常生活工作中,我们难免会遇到一些问题,比如图片上不合规的文字信息,却要一个一个地审核,很麻烦;快递公司的业务越来越好,但每天需要花费很多时间登记录入运单,效率非常的低。
随着汽车的需求暴增,车辆管理成为了城市管理的重中之重。移动端车牌识别技术已被广泛应用于城市智能交通、智慧小区的系统中,以往是手动录入车牌信息或者是一笔一划抄写车牌信息,如此,会增加人为的误差,降低了工作效率,后来移动端车牌识别技术在车辆管理中被应用,车辆管理体验感得到了提升,如今更是完美的集成了移动端车牌识别算法,通过前端就能进行解帧识别车牌,无需有有一个图片传输返回结果的过程,直接就可以把车牌识别出来,这是高新技术的又一个台阶。
牛小明为四川长虹电器股份有限公司的资深专家,也跟CV君一样曾供职于华为,是两个可爱宝贝的父亲,研究领域涉及图像、语音、文本信号处理和机器人等,Tel:15882855846; Email: xiaoming1.niu@changhong.com
车牌识别,是人工智能以及 OCR 领域的重要应用场景。通过拍摄的包含车牌的照片,实现识别出车牌文字的功能,能够大大提高车辆识别效率,在交通违规检测、罪案侦查中能提供有力支持,而 EasyPR,能够快速准确地识别中文车牌。 ◆ 简介 EasyPR,是 liuruoze 在 Gitee 上开源的中文车牌识别系统,仓库位于 https://gitee.com/liuruoze/EasyPR,目前版本为 1.6。 EasyPR 的目标是成为一个简单、高效、准确的非限制场景 (unconstrained situa
领取专属 10元无门槛券
手把手带您无忧上云