首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NeurIPS 2024|AlphaFold结合流匹配生成蛋白质系综

    今天为大家介绍的是来自Tommi Jaakkola团队的一篇论文。蛋白质的生物学功能通常依赖于动态结构系综。在这项工作中,作者开发了一种基于流的生成模型方法,用于学习和采样蛋白质的构象景观。作者将AlphaFold和ESMFold等高精度的单态预测器重新利用,并在自定义流匹配(Flow Matching)框架下对其进行微调,以获得序列条件的蛋白质结构生成模型,称为AlphaFLOW和ESMFLOW。在PDB上训练和评估时,该方法在精度和多样性上比AlphaFold的MSA子采样方法有显著优势。在对全原子MD的集合进行进一步训练后,该方法能够准确捕捉未见蛋白质的构象灵活性、位置分布和更高阶的系综观测值。此外,该方法可以通过更快的时间收敛于某些平衡特性,将静态PDB结构多样化,展示了其作为昂贵物理模拟代理的潜力。

    01

    【续】分类算法之贝叶斯网络(Bayesian networks)

    在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了

    08

    译文:朴素贝叶斯算法简介(Python和R中的代码)

    朴素贝叶斯是一种用于分类问题的机器学习算法。它是基于贝叶斯概率定理的。主要用于涉及高维训练数据集的文本分类。几个相关的例子有:垃圾邮件过滤、情感分析和新闻文章分类。 它不仅因其简单而著称,而且因其有效性而闻名。它能快速构建模型和使用朴素贝叶斯算法进行预测。朴素贝叶斯是用于解决文本分类问题的第一个算法。因此,应该把这个算法学透彻。 朴素贝叶斯算法是一种用于分类问题的简单机器学习算法。那么什么是分类问题?分类问题是监督学习问题的示例。它有助于从一组类别中识别新观察的类别(子群体)。该类别是基于包含其类别成

    05
    领券