首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

DBA不失业:云时代的数据库性能优化全攻略

性能问题是数据库中最重要也是最迫切要解决的问题之一,随着业务的发展和数据的不断加增,用户对于系统的响应速度的要求越来越高。而归根结底就是要提高数据库系统的性能。对于大部分的DBA来说,性能优化并不是一件容易的事情,造成性能问题的原因多种多样,在现实中,优化过程也会受到重重阻碍,随着云时代的到来以及自动化智能化运维的发展,那么云时代的DBA该如何优化数据库的性能呢? 在今年的数据技术嘉年华上,我们邀请了来自国内外各大企业的性能优化专家,从不同的角度分析云时代数据库性能优化的技术与技巧。 重点嘉宾与主题抢先一

09
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CVPR2022 Oral:StreamYOLO-流感知实时检测器

    【GiantPandaCV导语】 自动驾驶技术对延迟要求极高。过去的工作提出了信息流(后文均称Streaming)感知联合评价指标,用于评估算法速度和准确性。本论文提出检测模型对于未来的预测是处理速度和精度均衡的关键。作者建立了一个简单有效的Streaming感知框架。它配备了 一种新的**双流感知模块(Dual Flow Perception,DFP),其中包括捕捉动态Streaming和静态Streaming移动趋势的基本检测特征。此外,作者引 入了一个趋势感知损失(Trend-Aware Loss,TAL)**,并结合趋势因子,为不同移动速度的物体生成自适应权重。本文提出的方法在Argogrse-HD数据集上实展现了竞争性能,与原Baseline相比提高了4.9% mAP。

    02

    考场作弊行为自动抓拍告警算法

    考场作弊行为自动抓拍告警系统通过yolov7+python网络模型算法,考场作弊行为自动抓拍告警算法实时监测考场内所有考生的行为,对考生的行为进行自动抓拍,并分析判断是否存在作弊行为。考场作弊行为自动抓拍告警算法选择的YOLOv7网络YOLOv7 的发展方向与当前主流的实时目标检测器不同,团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

    04

    工地扬尘智能监测系统 YOLOv7

    工地扬尘智能监测系统算法模型通过yolov7网络算法模型技术,工地扬尘智能监测系统算法模型利用AI视频智能分析技术,并将数据传输到数据中心进行分析。工地扬尘智能监测系统算法模型之所以选择YOLOv7,是因为YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

    03

    办公室人员离岗识别检测系统

    办公室人员离岗识别检测系统根据yolov7网络模型深度学习技术,办公室人员离岗识别检测系统能够7*24小时全天候自动识别人员是否在岗位。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器,并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

    02

    水面漂浮物垃圾识别检测系统

    水面漂浮物垃圾识别检测系统通过yolov7网络模型AI视觉分析技术,水面漂浮物垃圾识别检测系统对河道湖面漂浮物、生活垃圾、水藻等多种漂浮物进行自动智能分析,水面漂浮物垃圾识别检测系统及时的预警提醒。OLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

    02
    领券