客户画像会用聚类分析 实际工作中,最常使用的当属回归类模型,其次便是客户画像。...即便是评分模型也会涉及到客户画像,由于首富客户的违约特征与普通百姓不同,故需进行区分,信用分池即为客户画像。...客户画像使用的技术为聚类分析,在营销场景中经常会逻辑回归模型与聚类分析一起配合构建模型。 聚类分析是什么?...例如: 对奶茶加盟店的经营业绩进行分类; 对来商场消费的客户进行分类; 评估一个产品的好坏时,将繁复的评价指标进行分类,从而简化评估体系。 ?...可见聚类分析是如此的不稳定,因此想做好聚类分析,必须要遵循完整的数据分析流程,才能够保证建模数据的稳定以及结果的可靠。 ? 聚类分析的流程?
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。...用户画像的分析核心一个是对用户建模打标签,关于这,之前宝器在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。...主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
那么如何在客户即将流失之前有效地发现他们,并对其特征进行刻画,从而帮助营销部门确定客户挽留市场活动的目标客户群以及合适的营销方案就是企业分析部门的重要工作。在这些方面,数据分析和挖掘可以帮助企业。...假设你是电信企业的一个数据分析经理,市场营销部的同事过来和你说: "前一段开市场总结会时老板说了,最近电信市场又在血拼,竞争对手不断挖我们的墙脚,公司的高端客户这个月又流失了不少。...3、如何定义分析用数据的时间窗口 对因变量(是否流失)的数据窗口来说,为使得到的预测结果既具有前瞻性,又能给营销部门充分的营销时间,考虑流失定义的时间窗口与自变量的定义窗口问隔一个月(考虑到客户详单数据并不是每个月末马上就能得到一一通常要有...4、如何从分析结果中获取实际收益 得到了流失预测结果,如何使用?如何事先预估市场挽留活动的收益?...通过数据挖掘得到流失分析的结果往往有两类:一类是流失客户的特征描述,另一类是针对每一个客户的流失评分。
举例而言,某位客户的特征描述为:男,31岁,收入一万以上,爱美食,团购达人,喜欢红酒配香烟。这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签画。...利用聚类算法分析,喜欢红酒的人年龄段分布情况? 换成运营商的例子则是这样:使用全球通品牌的人通常是什么职业?使用动感地带的客户收入情况怎么样?...制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标答提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。...数据源分析 构建用户画像的数据来源于所有用户相关的数据。对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。...目标分析 用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。
三、数据探索性分析 1、离散型变量的探索性分析方法 对无序型离散变量而言,以本案例中的手机品牌为例,对于名义型离散变量,关注的是该变量的取值分别有哪些,各个取值占比是多少。...2、连续型变量的探索性分析方法 对于连续型变量,通常可以使用描述统计量和图形两种方法来进行探索性分析。...如果希望得到两个离散变量之间关系的量化描述,可以使用交叉表来显示,从下图中可以看出每个手机品牌的流失与不流失人数及百分比,而最下面的卡方值和概率则表明从统计意义上两者是否无关,在这个案例中,看到概率=0...如果希望得到离散变量与连续变量之间的量化关系,则可以使用统计分析中的方差分析方法,从下图中可以看出,从统计意义上讲,在0.05显著性水平下。流失客户与不流失客户的高峰时期通话时长有着显著差异。 ?...尽管在话费不合理情况下,可以短期内获得超额利润,但是难以长久,可以建议业务部门关谊这一点,向客户推荐更加适合的话费方案。 对高峰时期通话行为相关的连续变量与流失之间的关系的探索性分析,得到: ? ?
用户画像分析的错误姿势 1.限于数据,动不敢动。一提用户画像,很多人脑海里立刻蹦出了性别,年龄,地域,爱好等基础信息字段,然后大呼:我们好像没这个数据,于是放弃分析了。...以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。...像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。...用户画像只是分析的一个工具,和其他分析一样,也要先考虑:我要解决的实际问题到底是什么。想清楚了,再把问题转化成用户相关的问题,就能继续使用用户画像分析方法了。 需要注意的是,商业问题是很复杂的。...第五步:归纳分析结论 如果以上几步做好了,在最后推分析结论就是水到渠成的事,完全不费力气。实际上,用户画像分析最大的问题都是出在前五步的。
有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。 用户画像分析的错误姿势 1.限于数据,动不敢动。...以上问题,都是太过纠结于用户画像四个字,忽视了分析两个字导致的。用户画像作为一个基础数据体系,本身并没有分析功能。单纯的罗列用户标签或者拆解用户指标,也起不到分析作用。...像利用好用户画像,还得按分析套路一步步来。 第一步:转化商业问题 用户画像分析,本质上是从用户的角度思考问题。...用户画像只是分析的一个工具,和其他分析一样,也要先考虑:我要解决的实际问题到底是什么。想清楚了,再把问题转化成用户相关的问题,就能继续使用用户画像分析方法了。 需要注意的是,商业问题是很复杂的。...第五步:归纳分析结论 如果以上几步做好了,在最后推分析结论就是水到渠成的事,完全不费力气。实际上,用户画像分析最大的问题都是出在前五步的。
构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。...比如,某公司想推出一款面向5-10岁儿童的玩具,通过用户画像进行分析,发现形象=“喜羊羊”、价格区间=“中等”的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。...业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。...还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。...数据可视化分析 这是把用户画像真正利用起来的一步,在此步骤中一般是针对群体的分析,比如可以根据用户价值来细分出核心用户、评估某一群体的潜在价值空间,以作出针对性的运营。 如图:
构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。...比如,某公司想推出一款面向5-10岁儿童的玩具,通过用户画像进行分析,发现形象=“喜羊羊”、价格区间=“中等”的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。...业务经营分析以及竞争分析,影响企业发展战略 构建流程 数据收集 数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。...还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。...数据可视化分析 这是把用户画像真正利用起来的一步,在此步骤中一般是针对群体的分析,比如可以根据用户价值来细分出核心用户、评估某一群体的潜在价值空间,以作出针对性的运营。
想要服务用户首先要了解用户,今天96新媒体就来为大家介绍一下如何通过用户画像来了解用户。...二、兴趣爱好 在对用户有一个基本的了解以后,后续才能对用户数据进行深入挖掘,分析用户究竟喜欢什么然后对症下药,这里可以通过以下两点来进行分析: 1、用户还关注了什么 去了解除了我以外,用户都还关注了哪些人...不仅如此,在了解了用户还喜欢哪些人以后,还可以对竞争对手研究分析,了解竞争对手的长处在哪里,自己与同类竞争对手相比起来自己有什么不足的地方,自己的优势在哪里,取长补短的同时放大自己的优势,提高自己的竞争力...网易云音乐为什么火,因为除了像传统音乐软件一样提供一个听音乐的地方以外,还为用户提供了一个可以发表评论的模块,让用户可以说出想说的话,让觉得有同感的用户可以点赞,到现在,评论数也已经成为了一个内容的重要数据之一,去分析排行榜上的视频的用户评论...,去从中了解现在用户愿意评论什么样的内容,去分析自己的视频的评论,从中找出自己不足的地方加以完善。
根据美国数据库营销研究所ArthurHughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary...这里借用@数据挖掘与数据分析 的RFM客户RFM分类图。...这里的RFM模型和进而细分客户仅是数据挖掘项目的一个小部分,假定我们拿到一个月的客户充值行为数据集(实际上有六个月的数据),我们们先用IBMModeler软件构建一个分析流: ?...结合RFM模型魔方块的分类识别客户类型:通过RFM分析将客户群体划分成重要保持客户、重要发展客户、重要挽留客户、一般重要客户、一般客户、无价值客户等六个级别;(有可能某个级别不存在); 另外一个考虑是针对...至此如果我们通过对RFM模型分析和进行的客户细分满意的话,可能分析就此结束!如果我们还有客户背景资料信息库,可以将聚类结果和RFM得分作为自变量进行其他数据挖掘建模工作!
本篇案例为数据猿推出的大型“金融大数据主题策划”活动(查看详情)第一部分的系列案例/征文;感谢 恒丰银行 的投递 作为整体活动的第二部分,2017年6月29日,由数据猿主办,上海金融行业信息协会、互联网普惠金融研究院联合主办...”四大类案例奖 来源:数据猿丨投递:恒丰银行 本文长度为6300字,建议阅读13分钟 互联网金融的蓬勃发展对银行带来巨大冲击。...2016年11月,迭代实现了可对单个客户进行客户画像、渠道偏好、交易偏好进行分析的客户价值分析功能,一期项目完成。...从业务角度出发,客户行为实时分析系统主要需要达到或支持以下三个角度的业务要求: 1)在营销角度,可以深度了解和分析客户在持有、购买、放弃产品及应用的前、中、后期行为特征,从而为客户偏好、360度画像...,渠道业务人员能够随时了解单一客户的理财产品偏好、基金产品偏好、地域偏好、功能偏好、访问时段偏好等行为画像信息,从而为后续精准营销、个性化定制应用、反欺诈等打下坚实数据基础。
为进一步精准、快速分析用户行为习惯、客户画像应运而生,本文就为大家阐述客户画像是如何生成的。...客户信息千千万,在生成客户画像前,需要了解业务方向与重心,例如,某行想知道零售客户群的分布情况,以及客户标签。故本文就以客户资产、投资偏好、风险承受能力三方面收集了近千条数据。...采用经典机器学习算法——聚类算法来生成客户画像,由于聚类算法是无监督模型,数据质量直接决定分群结果的好坏,这里收集到的数据大部分经过处理。 目标 1. 利用聚类算法,得到合理的分群客户。 2....最后如果要给领导看,那么就要学会在解读结果方面下文章,给领导讲讲故事,一个好的客户画像不仅需要使结果具有可解读性,更要能够清晰展现客户特点,以便后续精准营销。 ? 结语 本案例不足之处在于: 1....因为本案例中没有离散型数据。
主要内容 中国移动新闻资讯应用市场发展现状 中国移动新闻资讯应用用户特征分析 新闻客户端用户特征差异分析 中国移动新闻资讯应用市场发展现状 新闻资讯领域表现突出,用户渗透率超过五成 从整体移动端各细分领域来看...新闻客户端用户特征差异分析 新闻资讯行业格局稳定 ? 从渗透率看,15年下半年新闻资讯行业格局稳定,腾讯新闻以其强大的用户覆盖率,位列第一,今日头条虽是后起之秀,但势头猛烈,网易新闻位列第四。...四大新闻客户端各领域TGI特征值 ? ? ? ?...研究范围及研究内容 研究范围 本报告的主要研究对象网易新闻客户端,同时还研究了新闻资讯行业处于领先地位的几大客户端的用户情况:腾讯新闻、今日头条、搜狐新闻等。...研究内容 本报告的主要研究内容涉及中国新闻资讯市场现状、用户行为和特征分析,典型新闻客户端用户特征分析以及网易新闻客户端相关领域用户分析。
总的来说,用户画像分析就是基于大量的数据,建立用户的属性标签体系,同时利用这种属性标签体系去描述用户。 01 用户画像分析的作用 用户画像分析的作用主要有以下几个方面(见图1)。...图5 简单来说,用户画像分析可以帮助数据分析师更加清晰地刻画用户。 02 如何搭建用户画像 用户画像架构如图6所示。...功能画像分析:可以利用用户画像平台快速进行某个功能的用户画像描述分析,比如,音乐类APP中的每日推荐功能,我们想要知道使用每日推荐的用户是哪些用户群体,以及使用每日推荐不同时长的用户特征分别是怎样的。...内容简介 数据分析的精髓在于能够利用合理的数据分析方法来解决实际的业务问题,本书介绍了数据分析常见的思维和方法,并且呈现了这些分析方法在实际案例中的应用。...——赵猛,腾讯算法工程师 作者从实操角度切入,将数据分析经典方法论与业务工作融会贯通,真实案例为引,以创新模式拓宽数据分析应用的阳光大道,引人入胜、百看不厌。
例如上述基于最简单的用户数据可以分析出来的用户画像信息。 2、组成结构 用户画像的最核心工作是基于数据采集为用户贴上标签,随着标签的不断丰富用户的画像也会越来越清晰,最终达到了解甚至理解用户的能力。...多场景识别 这里场景相对偏复杂,通过一个案例描述,例如在某个平台用手机号A注册,之后该手机号A丢失,换用手机号B之后,通过相关行为去理解用户是否手机号A的用户,也可以根据同个手机序列识别不同用户或者多个手机序列识别相同用户...二、人群分析 每次开发用户群分析的案例,脑海都能响起一段话:独生子女,傲娇,温室花朵,冷漠自私,精致利己,想法清奇,个性张扬,缺乏团队意识,非主流,垮掉。...上述就是典型的人群画像分析的非典型案例,实际上最近几年对90人群分析报告已经非常多而且准确,很多数据公司都会从:社会属性、消费能力、游戏爱好、宠物、网络应用等多个热门领域做深度分析。...分析人群画像可以在商业应用中产生非常高的价值。 三、深度应用 1、商圈分析 首先基于商圈区域圈用户群,这里很好理解用户在某个商圈内产生数据,依次获取用户相关标签做该商圈内用户画像分析。
额度M:表示客户每次消费金额的多少,可以用最近一次消费金额,也可以用过去的平均消费金额,根据分析的目的不同,可以有不同的标识方法。...第二步:数据处理 根据分析需要,R用客户最后成交时间跟数据采集点时间的时间差(天数)作为计量标准;F根据数据集中每个会员客户的交易次数作为计量标准(1年的交易次数);M以客户平均的交易额为计量标准。...第四步:数据分析结果解读和可视化 得到这个分析结果,利用Excel的条件格式功能可以对得到的数据分析结果做简单的视觉化。...数据可视化案例与工具 5、回复“禅师”查看当禅师遇到一位理科生,后来禅师疯了!!...知识无极限 6、回复“啤酒”查看数据挖掘关联注明案例-啤酒喝尿布 7、回复“栋察”查看大数据栋察——大数据时代的历史机遇连载 8、回复“数据咖”查看数据咖——PPV课数据爱好者俱乐部省分会会长招募 9、
聚类分析在各行各业应用十分常见,而顾客细分是其最常见的分析需求,顾客细分总是和聚类分析挂在一起。...,高频客户、中频客户、低频客户,这样的状况;第二种,用多个变量交叉分组,比如用性别和收入两个变量,进行交叉细分。...事实是,我们总是希望考虑多方面特征进行聚类,这样基于多方面综合特征的客户细分比单个特征的细分更有意义,这正是SPSS聚类分析可以做到的,以下通过k-means聚类分析做一个小小案例来展示。...【分析结论】 做一个数据分析的项目,不能不下结论! 雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,对分析下结论,对业务问题进行及时解决,养成这个良好的习惯。 ? ?...参考自: 《SPSS12高级教程》,张文彤 《Clementine数据挖掘方法及应用》,薛薇 采用聚类分析的数据挖掘技术进行电信市场客户分群 电子商城的用户分析运用——客户细分(Customer Segmentation
他决定先上传到百度网盘,放在这个网盘地址里——链接: https://pan.baidu.com/s/1MihljCtBm1DBW9o6Xu9cFQ 提取码: wjgw 存好数据后,打工人去跟领导讨论一下需要分析哪些画像...购物目的画像:通过用户对商品的描述,如性价比、时尚潮流、环保可持续等,推断其购物的目的和价值观。接下来,就是基于这些数据和分析目标,开始基于Spark实现电商用户画像案例讲解。...本次代码案例里,暂时不需要涉及那么复杂的存储,只需了解真实生产线上数据是放HDFS、HBase等仓库存储即可。...二、画像数据分析的实现2.1、商品类别偏好画像根据用户对汽车配件、珠宝首饰、图书音像等不同商品类别的选择,可以推测用户的兴趣爱好和消费倾向。...针对这类情况,可以做进一步分析,进而调整营销策略。
领取专属 10元无门槛券
手把手带您无忧上云