首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

宽数据集(400列)上的lightgbm内存问题

宽数据集上的lightgbm内存问题是指在使用lightgbm算法进行机器学习训练时,由于数据集的宽度较大(包含400列),可能会导致内存不足的问题。

为了解决这个问题,可以采取以下几种方法:

  1. 特征选择:对于宽数据集,可以通过特征选择的方法,筛选出对目标变量影响较大的特征进行训练,减少数据集的宽度,从而降低内存消耗。
  2. 数据压缩:对于宽数据集,可以考虑使用数据压缩的方法,如稀疏矩阵压缩技术,将稀疏的数据集转换为稠密的数据集,从而减少内存占用。
  3. 分批训练:将宽数据集分成多个较小的批次进行训练,每次只加载部分数据进行训练,可以通过设置chunk_size参数来控制每次加载的数据量。这样可以减少内存的使用,但可能会增加训练时间。
  4. 增加内存:如果以上方法无法解决内存问题,可以考虑增加系统的内存容量,以满足宽数据集的训练需求。

对于lightgbm算法,它是一种基于梯度提升决策树(Gradient Boosting Decision Tree)的机器学习算法,具有高效、快速、准确的特点。它在处理大规模数据集时具有较低的内存消耗和较快的训练速度,适用于分类和回归问题。

在腾讯云中,可以使用腾讯云机器学习平台(Tencent Machine Learning Platform,TMLP)来进行宽数据集上的lightgbm训练。TMLP提供了丰富的机器学习算法和模型训练工具,可以帮助用户高效地进行机器学习任务。具体产品介绍和使用方法可以参考腾讯云官方文档:腾讯云机器学习平台

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • LightGBM图解理论+视频+安装方法+python代码

    LightGBM是个快速的,分布式的,高性能的基于决策树算法的梯度提升框架。可用于排序,分类,回归以及很多其他的机器学习任务中。 在竞赛题中,我们知道XGBoost算法非常热门,它是一种优秀的拉动框架,但是在使用过程中,其训练耗时很长,内存占用比较大。在2017年年1月微软在GitHub的上开源了一个新的升压工具--LightGBM。在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。因为他是基于决策树算法的,它采用最优的叶明智策略分裂叶子节点,然而其它的提升算法分裂树一般采用的是深度方向或者水平明智而不是叶,明智的。因此,在LightGBM算法中,当增长到相同的叶子节点,叶明智算法比水平-wise算法减少更多的损失。因此导致更高的精度,而其他的任何已存在的提升算法都不能够达。与此同时,它的速度也让人感到震惊,这就是该算法名字 灯 的原因。 2014年3月,XGBOOST最早作为研究项目,由陈天奇提出 (XGBOOST的部分在另一篇博客里:https://blog.csdn.net/huacha__/article/details/81029680 2017年1月,微软发布首个稳定版LightGBM 在微软亚洲研究院AI头条分享中的「LightGBM简介」中,机器学习组的主管研究员王太峰提到:微软DMTK团队在github上开源了性能超越其它推动决策树工具LightGBM后,三天之内星了1000+次,叉了超过200次。知乎上有近千人关注“如何看待微软开源的LightGBM?”问题,被评价为“速度惊人”,“非常有启发”,“支持分布式” “代码清晰易懂”,“占用内存小”等。以下是微软官方提到的LightGBM的各种优点,以及该项目的开源地址。

    02

    BIB | PreDTIs: 利用梯度增强框架预测药物-靶点相互作用

    今天给大家介绍Mohammad Ali Moni与Ulfarsson等人在Briefings in Bioinformatics上发表的文章“PreDTIs: prediction of drug–target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques”。发现药物 - 靶点(蛋白质)相互作用(DTIS)对于研究和开发新的药物具有重要意义,对制药行业和患者具有巨大的优势。然而,使用实验室实验方法对DTI的预测通常是昂贵且耗时的。因此,已经为此目的开发了不同的基于机器学习的方法,但仍有需要提升的空间。此外,数据不平衡和特征维度问题是药物目标数据集中的一个关键挑战,这可以降低分类器性能。该文章提出了一种称为PreDTIs的新型药物 – 靶点相互作用预测方法。首先,蛋白质序列的特征载体由伪定位特异性评分矩阵(PSEPSSM),二肽组合物(DC)和伪氨基酸组合物(PSEAAC)提取;并且药物用MACCS子结构指数编码。此外,我们提出了一种快速算法来处理类别不平衡问题,并开发MoIFS算法,以删除无关紧要和冗余特征以获得最佳最佳特征。最后,将平衡和最佳特征提供给LightGBM分类器的以识别DTI,并应用5折CV验证测试方法来评估所提出的方法的预测能力。预测结果表明,所提出的模型预测显着优于预测DTIS的其他现有方法,该文章的模型可用于发现未知疾病或感染的新药。

    01

    LightGBM算法总结

    1 LightGBM原理 1.1 GBDT和 LightGBM对比 1.2 LightGBM 的动机 1.3 Xgboost 原理 1.4 LightGBM 优化 1.4.1 Histogram 算法 1.4.2 带深度限制的 Leaf-wise 的叶子生长策略    1.4.3 直方图加速 1.4.4 直接支持类别特征 1.4.5 LightGBM并行优化 1.5 其他注意 2 lightGBM代码 2.1 基础代码 2.2 模板代码 2.2.1 二分类 2.2.2 多分类 2.3 lightGBM 和 xgboost 的代码比较 2.3.1 划分训练集测试集 2.3.2 设置参数 2.3.3 模型训练 2.3.4 模型执行时间 2.3.5 模型测试 2.3.6 分类转换 2.3.7 准确率计算 2.3.8 roc_auc_score计算 3 lightGBM调参 3.1 参数 3.1 控制参数 3.2 核心参数 3.3 IO参数 3.2 调参 4 lightGBM案例 4.1 回归案例 4.1.1 代码 4.1.2 运行结果 4.2 [ICC竞赛] 精品旅行服务成单预测 4.2.1 业务需求 4.2.2 数据表格 4.2.3 lightGBM模型 5 lightGBM的坑 5.1 设置提前停止 5.2 自动处理类别特征 5.3 自动处理缺失值

    03

    视频+案例,玩转LightGBM

    LightGBM在Higgs数据集上LightGBM比XGBoost快将近10倍,内存占用率大约为XGBoost的1/6,并且准确率也有提升。 Xgboost已经十分完美了,为什么还要追求速度更快、内存使用更小的模型? 对GBDT算法进行改进和提升的技术细节是什么? 一、提出LightGBM的动机 常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。 而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。 LightGBM提出的主要原因就是为了解决GBDT在海量数据遇到的问题,让GBDT可以更好更快地用于工业实践。

    02
    领券