NWPU VHR-10目标检测数据集中的ground truth,统一为256x256有时候在使用的时候很不方便,因此需要将宽和高指定为真实的宽和高,python的源代码如下,from xml.etree.ElementTree
今天在kaggle上看到一个心脏病数据(数据集下载地址和源码见文末),那么借此深入分析一下。 数据集读取与简单描述 首先导入library和设置好超参数,方便后续分析。...顺手送上一篇知乎链接 此外上边只是我通过原版数据集给的解读翻译的,如有出错误,欢迎纠正 拿到一套数据首先是要看看这个数据大概面貌~ 男女比例 先看看患病比率,男女比例这些常规的 countNoDisease...需要注意,本文得到的患病率只是这个数据集的。...数据集中还有很多维度可以组合分析,下边开始进行组合式探索分析 年龄-心率-患病三者关系 在这个数据集中,心率的词是‘thalach’,所以看年龄、心率、是否患病的关系。...本篇分析了心脏病数据集中的部分内容,14列其实有非常多的组合方式去分析。此外本文没有用到模型,只是数据可视化的方式进行简要分析。
2.具体实现 (1)方法一 ①利用slearn库中的load_iris()导入iris数据集 ②使用train_test_split()对数据集进行划分 ③KNeighborsClassifier...(X_test,y_test))) (2)方法二 ①使用读取文件的方式,使用open、以及csv中的相关方法载入数据 ②输入测试集和训练集的比率,对载入的数据使用shuffle()打乱后,计算训练集及测试集个数对特征值数据和对应的标签数据进行分割...将距离进行排序,并返回索引值, ④取出值最小的k个,获得其标签值,存进一个字典,标签值为键,出现次数为值,对字典进行按值的大小递减排序,将字典第一个键的值存入预测结果的列表中,计算完所有测试集数据后,...⑤将预测结果与测试集本身的标签进行对比,得出分数。...进行数据处理 :param filename: 数据集的路径 :return: 返回数据集的数据,标签,以及标签名 """ with open(filename) as csv_file:
描述 在机器学习中,拿到一堆训练数据一般会需要将数据切分成训练集和测试集,或者切分成训练集、交叉验证集和测试集,为了避免切分之后的数据集在特征分布上出现偏倚,我们需要先将数据打乱,使数据随机排序,然后在进行切分...需要用的方法如下: 注:df代表一个pd.DataFrame df = df.sample(frac=1.0): 按100%的比例抽样即达到打乱数据的效果 df = df.reset_index():...打乱数据之后index也是乱的,如果你的index没有特征意义的话,直接重置就可以了,否则就在打乱之前把index加进新的一列,再生成无意义的index train = df.loc[0:a]: 进行切分操作
数据集[1] 提取码:krry 有关AdaBoost的详细介绍可以参考:【干货】集成学习(Ensemble Learning)原理总结 •先利用pandas读入csv文件,以DataFrame形式存储...;然后将数据转成list(其实也可以直接操作,不过本人习惯这样做): data = np.array(data).tolist() •分割数据,最后一列作为标签类别y,其余列为x: x = [];...#测试 print(clf.score(test_x, test_y)) if __name__ == '__main__': AdaBoost() References [1] 数据集
接着前面2期rbf相关的应用分享一下rbf在分类场景的应用,数据集采用iris 前期参考 Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 一、数据集 iris以鸢尾花的特征作为数据来源...,数据集包含150个数据集,分为3类(setosa,versicolor, virginica),每类50个数据,每个数据包含4个属性。...每一个数据包含4个独立的属性,这些属性变量测量植物的花朵(比如萼片和花瓣的长度等)信息。要求以iris数据为对象,来进行不可测信息(样本类别)的估计。...数据随机打乱,然后训练集:测试集=7:3进行训练,并和实际结果作比较 二、编程步骤、思路 (1)读取训练数据通过load函数读取训练数据,并对数据进行打乱,提取对应的数据分为训练和验证数据,训练集和验证集...训练模型 net = newrb(XTrain,YTrain,eg,sc); NEWRB, neurons = 0, MSE = 0.656327 预测准确率: 97.7778 % (3)使用新的数据集测试这个网络将待识别的样本数据
在【rainbowzhou 面试15/101】技术提问--数据质量管理的流程有哪些?中,我讲述数据质量管理的四个阶段。今天详细说说如何进行数据质量检查,希望对大家有所帮助。...对于重要的数据集,一般都会进行数据质量自查评估,用来评估该数据集质量是否符合业务需求~ 数据质量检查评估的流程? 如图,数据质量检查评估的流程分为5部分。...例如,在数据采集、同步、计算和存储等任意环节进行重构或更换组件时,我们需要对受变更影响的数据进行质量评估(包括新增的与已有的)。 新业务需求强依赖的数据集。...例如,对一个数据集进行特征模块开发前,需要对依赖的数据集进行评估。只有通过评估的数据,才能满足特征开发的前提条件。...推荐使用定量评估,也可将两者结合使用~ 进行评估并生成评估报告 确定完评估方法后,需要根据选定的评估维度、评估标准和评估方法来对数据集进行评估。
从公开的数据集上调研一下可能性,但是没有发现有类似的数据集,于是想着从其他的方式入手,大致方向有三个,第一个就是利用人脸检测的框来推断出身体的位置,从而得到身体的框;第二种就是通过行人检测的数据集,将行人框的高度缩小一半来得到上半身的框...;第三种是利用人体关键点检测数据集,利用关键点来确定上半身的框。...经过调研和讨论,还是觉得用关键点的方式比较靠谱,最终选择了 COCO 数据集,它有 17 个关键点标注,我们可以利用左右肩和左右臀这四个关键点来实现上半身的检测,整一个流程的 pipeline 如下图,...这里是 COCO 对人体标注的所有关键点,我们只需要取其中的四个就行了,注意 COCO 的一个关键点对应着数组中的三个数,也就是 (x, y, flag),其中 flag 为 0 代表关键点没有标注,为...所以接下去就直接遍历训练集的所有图片找到有关键点标注的图片并且修改成 bounding box 了,代码贴在下面,完整的代码可以在我的 GitHub 仓库找到 import json import numpy
[PyTorch小试牛刀]实战四·CNN实现逻辑回归对FashionMNIST数据集进行分类(使用GPU) 内容还包括了网络模型参数的保存于加载。...数据集 下载地址 代码部分 import torch as t import torchvision as tv import numpy as np import time # 超参数 EPOCH...= 5 BATCH_SIZE = 100 DOWNLOAD_MNIST = True # 下过数据的话, 就可以设置成 False N_TEST_IMG = 10 # 到时候显示
[PyTorch小试牛刀]实战三·DNN实现逻辑回归对FashionMNIST数据集进行分类(使用GPU) 内容还包括了网络模型参数的保存于加载。...数据集 下载地址 代码部分 import torch as t import torchvision as tv import numpy as np import time # 超参数 EPOCH...= 10 BATCH_SIZE = 100 DOWNLOAD_MNIST = True # 下过数据的话, 就可以设置成 False N_TEST_IMG = 10 # 到时候显示
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw 提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou.../p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com.../xiximayou/p/12448300.html 保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html 加载保存的模型并测试:https...www.cnblogs.com/xiximayou/p/12489069.html 使用预训练的resnet18模型:https://www.cnblogs.com/xiximayou/p/12504579.html 计算数据集的平均值和方差...:https://www.cnblogs.com/xiximayou/p/12507149.html 读取数据集的第二种方式:https://www.cnblogs.com/xiximayou/p/12516735
之前发了增广数据或者间比法的分析方法,R语言还是有点门槛,有朋友问能不能用Excel或者SPSS操作?我试了一下,Excel肯定是不可以的,SPSS我没有找到Mixed Model的界面。...矫正值 校正值即是对原来的观测值去掉区组效应后的值,这个值更接近于品种的真实值,可以根据它来进行排序,进行品种筛选。 ?...更好的解决方法:GenStat 我们可以看出,我们最关心的其实是矫正产量,以及LSD,上面的算法非常繁琐,下面我来演示如果这个数据用Genstat进行分析: 导入数据 ? 选择模型:混合线性模型 ?...LSD 因为采用的是混合线性模型,它假定数据两两之间都有一个LSD,因此都输出来了,我们可以对结果进行简化。...结论 文中给出的是如何手动计算的方法,我们给出了可以替代的方法,用GenStat软件,能给出准确的、更多的结果,如果数据量大,有缺失值,用GenStat软件无疑是一个很好的选择。
[PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU) 内容还包括了网络模型参数的保存于加载。...数据集 下载地址 代码部分 import torch as t import torchvision as tv import numpy as np import time # 超参数 EPOCH...= 5 BATCH_SIZE = 100 DOWNLOAD_MNIST = True # 下过数据的话, 就可以设置成 False N_TEST_IMG = 10 # 到时候显示...t.nn.Sequential( t.nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了 input_size=28, # 图片每行的数据像素点
对DBpedia各子数据集特点分析 数据地址见DBPedia官网。 Mainly From DataSet 3.0 ,一般同样的数据集,版本越新,size越大。...以下数据集同样猜测为单一谓语: Titles ( preview ) From Extended Abstracts ( preview
1 问题 深度学习中,数据很多,不能一次性把数据全都放到模型中进校训练,所以利用数据加载,进行顺序打乱,分批,预处理之类的操作 2 方法 使用pytorch提供的 Dataset(数据集类)(获取数据位置和个数...DataLoader(数据加载器类): 1.传入dataset 2.batch_size 批大小 3.shuffle 数据打乱 train_loader=DataLoader(dataset=train...batch_size=128,shuffle=True) test_loader = DataLoader(dataset=test, batch_size=128) 构造一个两到三层的神经网络,因为minsit数据不是很复杂...,所以层数对数据的效果没有太大的影响。...经过以上的操作就是对minsit数据的一个简单处理,为接下来的深度学习做准备。
对比不同分辨率的网格数据时,通常需要将数据插值到相同网格。有很多工具可以实现此功能,本文主要讲一下如何利用xesmf对网格数据进行regrid。...原始的数据分辨率为 1.25 x 1.875 度,然后将网格插值为2.5x2.5度。...注意:由于这里所使用的是全球数据,periodic=True是为了保证在沿着中心经度时不会出现空白间隙。...regridder = xe.Regridder(ds, ds_out, 'bilinear', periodic=True) 下一步就是进行插值操作了: tas_25deg = regridder(...'tas']) 可以绘图对比一下结果: ds['tas'].isel(time=0).plot() tas_25deg.isel(time=0).plot() 插值前后温度分布 如果需要频繁的对相同网格分辨率的数据进行插值
关于数据集 在.net 应用中,与数据库进行连接并查询相关数据,填充到数据集是我们经常用到的功能,数据集的表现形式基本包括如下: 1、 DataSet DataSet 是 ADO.NET 中的数据集合对象...2、 DataReader DataReader 也是数据集的一种形式,它与 DataSet 的区别在于,其只允许以只读、顺序向下的方式查看其中所存储的数据,高效和简单,是一种非常节省资源的数据对象.../ IDbCommand 等相关通用数据接口》 本文将介绍如何通过利用IDbDataAdapter / IDataReader 实现通用数据集获取。...获取数据集的执行流程 首先需要创建连接对象,成功后下达符合对应数据库规范的命令指令,该指令可能包括需要的参数对象(需要定义名称和赋值等操作),通过数据适配器 IDbDataAdapter 接口对象填充到...,感谢您的阅读,希望本文能够对您有所帮助。
下载数据集请登录爱数科(www.idatascience.cn) 由电商平台爬取的图书信息,包括书名、出版信息、当前价格等。 1. 字段描述 2. 数据预览 3. 字段诊断信息 4....数据来源 当当网搜索页面爬取。
下载数据集请登录爱数科(www.idatascience.cn) 通过物理测量预测鲍鱼的年龄。...鲍鱼的年龄是通过将蛋壳切成圆锥形,对其进行染色并通过显微镜对其进行计数来确定的,这是一项无聊且耗时的工作。其他更容易获得的测量值可用于预测年龄。...从原始数据中删除了缺失值的样本,并且对连续值的范围进行了缩放。数据集共4177个样本,8个字段 1. 字段描述 2. 数据预览 3. 字段诊断信息 4....数据来源 Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn and Wes B Ford (1994) "The Population...数据引用 Nash W J, Sellers T L, Talbot S R, et al.
下载数据集请登录爱数科(www.idatascience.cn) 其记录了2014年之前天文学家在恒星(除了太阳)周围发现的行星的信息。 1. 字段描述 2. 数据预览 3....数据来源 来源于UCI机器学习库。
领取专属 10元无门槛券
手把手带您无忧上云