上市公司新闻文本分析与分类预测 基本步骤如下: 从新浪财经、每经网、金融界、中国证券网、证券时报网上,爬取上市公司(个股)的历史新闻文本数据(包括时间、网址、标题、正文) 从Tushare上获取沪深股票日线数据...,并存储到新的数据库中(或导出到CSV文件) 实时抓取新闻数据,判断与该新闻相关的股票有哪些,利用上一步的结果,对与某支股票相关的所有历史新闻文本(已贴标签)进行文本分析(构建新的特征集),然后利用...SVM(或随机森林)分类器对文本分析结果进行训练(如果已保存训练模型,可选择重新训练或直接加载模型),最后利用训练模型对实时抓取的新闻数据进行分类预测 开发环境Python-v3(3.6): gensim...从数据库中抽取与某支股票相关的所有新闻文本 将贴好标签的历史新闻进行分类训练,利用训练好的模型对实时抓取的新闻文本进行分类预测 * 新闻爬取(crawler_cnstock.py,crawler_jrj.py...,run_crawler_jrj.py,run_crawler_nbd.py,run_crawler_sina.py,run_crawler_stcn.py这5个py文件,而且可能因为对方服务器没有响应而重复多次运行这几个文件才能抓取大量的历史数据
如今,大数据时代悄然来临。专家用“大数据”的表达描述大量信息,比如数十亿人在计算机、智能手机以及其他电子设备上分享的照片、音频、文本等数据。...对人们而言,想要利用这些庞大的数据,首先必须要了解它们,而在此之前我们需要一种快捷有效自动的方式对数据进行分类。...其中一种最为常用的系统,是一系列称之为簇分析的统计技术,这种技术能依据数据的“相似性”进行数据分组。...簇分析就是用来有效地鉴别密集型区域,基于基本的准则将数据分为一定数量的重要子集合,每个子集合对应一种分类。...“我们的方法基于一种新的鉴定簇中心,比如子集合,”另一位研究者Alex Rodriguez解释道,“试想这样的情形,在无法访问地图中,却不得不鉴定全球所有的城市时,这无疑是一个艰巨的任务。”
DNN(深度神经网络)分类器实现对鸢尾花的分类。...和之前一样,先分析一下原文中的示例,很多文章对原文中的示例进行翻译,但是并没有举一反三,这样其实学习效果并不好,本文会在学习后使用原文的方法,解决一个新的问题。...:目标数据的类型,本例中为分类 ID,使用整形表示 features_dtype:特征值的类型,本例中是花萼花瓣的长宽度,使用浮点数表示 打开 load_csv_with_header 的源代码,可以看到它的实现方式...可以看到测试集的准确率是 96.67%,总共 30 个测试数据,错了 1 个。 那么未来对于单个输入数据,我们怎么使用训练好的模型对其进行分类呢?...学会使用 DNN 分类器之后,如果有一些数据,有几个输入特征值,需要将其分类,就可以采用 DNN 分类器很方便地对其进行处理,前提是训练的数据集数量足够,这样才能达到比较好的训练效果。
CLIP 经过训练可以预测图像和文本片段是否配对在一起。有趣的是,这种能力可以重新用于执行零样本分类。...使用 CLIP 执行零样本分类 形式化这个过程,零样本分类实际上包括以下步骤: 计算图像特征嵌入 从相关文本(即类名/描述)计算每个类的嵌入 计算图像类嵌入对的余弦相似度 归一化所有相似性以形成类概率分布...CLIP 与以预训练的 ResNet50 特征作为输入的线性分类器 当分析每个数据集的性能时,很明显 CLIP 在一般对象分类数据集(例如 ImageNet 或 CIFAR10/100)上表现良好,甚至在动作识别数据集上表现更好...与少镜头线性分类器相比,CLIP 零和少镜头性能 当使用 CLIP 特征训练完全监督的线性分类器时,发现它在准确性和计算成本方面都优于许多基线,从而强调了 CLIP 通过自然语言监督学习的表示的质量;见下文...使用 CLIP 的完全监督线性分类器性能 尽管 CLIP 的性能并不完美(即,它在专门的任务上表现不佳,并且仅适用于对每个类别都有良好文本描述的数据集),但 CLIP 实现的零样本和少样本结果预示了高概率产生的可能性
大家好,又见面了,我是你们的朋友全栈君。 KNN算法实现鸢尾花数据集分类 一、knn算法描述 1.基本概述 knn算法,又叫k-近邻算法。...属于一个分类算法,主要思想如下: 一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一个类别,则该样本也属于这个类别。其中k表示最近邻居的个数。...(X_test,y_test))) (2)方法二 ①使用读取文件的方式,使用open、以及csv中的相关方法载入数据 ②输入测试集和训练集的比率,对载入的数据使用shuffle()打乱后,计算训练集及测试集个数对特征值数据和对应的标签数据进行分割...③将分割后的数据,计算测试集数据与每一个训练集的距离,使用norm()函数直接求二范数,或者载入数据使用np.sqrt(sum((test – train) ** 2))求得距离,使用argsort()...将距离进行排序,并返回索引值, ④取出值最小的k个,获得其标签值,存进一个字典,标签值为键,出现次数为值,对字典进行按值的大小递减排序,将字典第一个键的值存入预测结果的列表中,计算完所有测试集数据后,
混合量子-经典体系对量子数据的分类问题 经典计算机中可以利用比特位和逻辑门进行二进制运算,在物理硬件方面,二进制运算主要通过半导体的特殊电性质实现。...下文将以Tensorflow Quantum为示例,演示三种不同模型对量子数据的分类。...这些网络可以跨空间连接参数,学习一组共享的过滤器,这些过滤器可均等的用于所有数据。 就现实情况而言,短时间内我们不应该寄期望于使用量子神经网络对经典数据分类能体现出量子优势。...在本例中,量子数据集是在8个量子位上的正确和错误准备的簇态,任务是对这些状态集合进行分类。数据集准备分为两个阶段。...该实验证明了探索混合量子经典体系结构对量子数据进行分类的优势。 图为 混合量子经典体系对量子数据结构的分类优势。三种不同混合分类器训练时间的函数。
[PyTorch小试牛刀]实战四·CNN实现逻辑回归对FashionMNIST数据集进行分类(使用GPU) 内容还包括了网络模型参数的保存于加载。...数据集 下载地址 代码部分 import torch as t import torchvision as tv import numpy as np import time # 超参数 EPOCH...= 5 BATCH_SIZE = 100 DOWNLOAD_MNIST = True # 下过数据的话, 就可以设置成 False N_TEST_IMG = 10 # 到时候显示.../model_params.pkl') # 只保存网络中的参数 (速度快, 占内存少) #加载参数的方式 """net = DNN() net.load_state_dict...GPU运算CNN速率大概是CPU的12~15倍(23/1.75),推荐大家使用GPU运算,显著提升效率。
[PyTorch小试牛刀]实战三·DNN实现逻辑回归对FashionMNIST数据集进行分类(使用GPU) 内容还包括了网络模型参数的保存于加载。...数据集 下载地址 代码部分 import torch as t import torchvision as tv import numpy as np import time # 超参数 EPOCH.../model_params.pkl') # 只保存网络中的参数 (速度快, 占内存少) #加载参数的方式 """net = DNN() net.load_state_dict...0.881 0.859 结果分析 我笔记本配置为CPU i5 8250u GPU MX150 2G内存 使用CPU训练时,每100步,2.2秒左右 使用GPU训练时,每100步,1.4秒左右 提升了将近...2倍, 经过测试,使用GPU运算DNN速率大概是CPU的1.5倍,在简单的网络中GPU效率不明显,在RNN与CNN中有超过十倍的提升。
作者:Mike Frank 译:徐轶韬 面临的挑战 使用敏感信息时您需要拥有审计日志。通常,此类数据将包含一个分类级别作为行的一部分,定义如何处理、审计等策略。...在之前的博客中,我讨论了如何审计分类数据查询。本篇将介绍如何审计对机密数据所做的数据更改。...敏感数据可能被标记为– 高度敏感 最高机密 分类 受限制的 需要清除 高度机密 受保护的 合规要求通常会要求以某种方式对数据进行分类或标记,并审计该数据上数据库中的事件。...特别是对于可能具有数据访问权限但通常不应查看某些数据的管理员。 敏感数据可以与带有标签的数据穿插在一起,例如 公开 未分类 其他 当然,您可以在MySQL Audit中打开常规的插入/更新/选择审计。...如果您只想审计敏感数据是否已更改,下面是您可以执行的一种方法。 一个解决方法 本示例使用MySQL触发器来审计数据更改。
本文将解释什么是数据增强,谷歌AutoAugment如何搜索最佳增强策略,以及如何将这些策略应用到您自己的图像分类问题。...然后,该决策作为输入传递到控制器的下一步,这是因为控制器是一个RNN(对于NASNet,使用了一个包含100个隐藏单元的LSTM)。然后控制器决定应用哪个幅值的操作。第三步是选择概率。...源自:https://arxiv.org/abs/1805.09501v1 两个迁移学习 如果我们想要解决图像分类问题,通常使用来自ImageNet预训练的权重初始化模型,然后对这些权重进行微调。...如果我们同时使用这两种方法:在使用ImageNet AutoAugment 策略时微调ImageNet的权重?这些优化的效果会叠加起来,为我们解决新的图像分类问题提供新的最佳方法吗?...Cars),对Inception v4进行微调,使用或不使用来自AutoAugment的ImageNet策略。
下面我就以一个图片分类器的构建为例,说明如何构建一个属于自己的AI模型。 说到图片分类器,有的同学可能又存在疑问?市面上不是已经有很多模型了吗?比如拍照识花、给猫狗图片分类等等。...对的,本文就是在这些模型的基础上,训练出能够识别我常喝的两种牛奶的分类器(牛顿不是也说过,要站在巨人的肩膀上。。。)。我常喝的牛奶是长这样的: ? ?...要构建自己的图片分类器,首先需要数据,数据不能太少。在深度学习领域,数据往往比算法更重要(不是我说的,吴恩达说的。。。)。在本问题中,我们需要的数据就是有关这两种牛奶包装的图片。...至此,训练我们自己的分类器的任务就结束了,在下一篇文章中,我将带领大家探索如何在Android手机上使用我们的图片分类器。...使用录制视频的方式生成数据集学的是这个视频: https://youtu.be/EnFyneRScQ8?t=4m17s
[PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU) 内容还包括了网络模型参数的保存于加载。...数据集 下载地址 代码部分 import torch as t import torchvision as tv import numpy as np import time # 超参数 EPOCH...t.nn.Sequential( t.nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了 input_size=28, # 图片每行的数据像素点.../model_params.pkl') # 只保存网络中的参数 (速度快, 占内存少) #加载参数的方式 """net = DNN() net.load_state_dict...CPU训练时,每100步,58秒左右 使用GPU训练时,每100步,3.3秒左右 提升了将近20倍, 经过测试,使用GPU运算RNN速率大概是CPU的15~20倍,推荐大家使用GPU运算,就算GPU
一、创建用户 1.1 步骤 1.2 注意事项 二、处理空表 (1)描述 Oracle11g中的新特性,当一个表中的数据为0时不分配segment,所以就不能够被导出。...,仍不能导出,只能对后面新增的表产生作用,如需导出之前的空表只能使用方法一。...方法三: 使用下面SQL查找空表,把查询结果导出,执行导出的语句,强行修改segment值,然后再执行导出语句,则可以导出空表。...三、使用传统方式进行迁移 2.1 步骤 (1)处理空表 select 'alter table '||table_name||' allocate extent;' from user_tables...imp username/password@service file=filename.dmp full=y ignore=y; 四、使用数据泵方式进行迁移 3.1 步骤 (1)处理空表 select
p=19751本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类 。 最近我们被客户要求撰写关于LSTM的研究报告,包括一些图形和统计输出。...要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。本示例使用日语元音数据集。...训练LSTM网络使用指定的训练选项来训练LSTM网络 trainNetwork。测试LSTM网络加载测试集并将序列分类为扬声器。加载日语元音测试数据。 ...本文选自《matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类》。...Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测结合新冠疫情
p=19751 本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。 要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。....,“ 9”的分类向量,分别对应于九个扬声器。中的条目 XTrain 是具有12行(每个要素一行)和不同列数(每个时间步长一列)的矩阵。...训练LSTM网络 使用指定的训练选项来训练LSTM网络 trainNetwork。 测试LSTM网络 加载测试集并将序列分类为扬声器。 加载日语元音测试数据。 ...确保测试数据的组织方式相同。按序列长度对测试数据进行排序。 分类测试数据。要减少分类过程引入的数据量,请将批量大小设置为27。要应用与训练数据相同的填充,请将序列长度指定为 'longest'。.../numel(YTest) acc = 0.9730 本文选自《matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类》。
p=19751 本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类 。 最近我们被客户要求撰写关于LSTM的研究报告,包括一些图形和统计输出。...要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。 本示例使用日语元音数据集。...训练LSTM网络 使用指定的训练选项来训练LSTM网络 trainNetwork。 测试LSTM网络 加载测试集并将序列分类为扬声器。 加载日语元音测试数据。 ...确保测试数据的组织方式相同。按序列长度对测试数据进行排序。 分类测试数据。要减少分类过程引入的数据量,请将批量大小设置为27。要应用与训练数据相同的填充,请将序列长度指定为 'longest'。.../numel(YTest) acc = 0.9730 本文选自《matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类》。
为了充分利用组学技术的进步,更全面地了解人类疾病,需要新的计算方法对多种类型的组学数据进行综合分析。...随着个性化医疗的快速发展,具有详细注释的管理数据集(用于描述样本的表型或特征)变得越来越广泛。因此,有监督的多组学整合方法越来越受到关注,这种方法可以识别疾病相关的生物标志物并对新样本进行预测。...在预处理和特征预选以去除噪声和冗余特征之后,MOGONET首先使用GCN分别学习每种组学数据类型的分类任务。...另外,研究团队在mRNA、DNA甲基化和miRNA数据上证明了在生物医学应用中整合多种类型的组学数据以提高分类性能的必要性,同时进一步证明了GCN在组学数据分类问题中的有效性,以及使用VCDN对组学数据进行跨组学学习的有效性...为了进一步证明超参数k在二元分类和多类分类任务中对MOGONET性能的影响,研究团队使用ROSMAP数据集和BRCA数据集在广泛的k值下训练MOGONET,观察到MOGONET的分类性能随着k的变化而波动
多元自适应回归样条(MARS):2个分类器 其他方法(OM):10个分类器。 这是一个巨大的研究。 一些算法在计算最后的得分前被调整,并且使用4则交叉验证来评估算法。...下载它,打印并使用它 免费下载 要非常小心地准备数据 有些算法仅适用于分类数据,其他算法需要数值型数据。一些算法可以处理你扔给它们的任何东西。...UCI机器中的数据集通常是标准化的,但是不足以在原始状态下用于这样的研究。 这已经在“ 关于为分类器准备数据的论述 ” 一文中指出。...由于将分类属性转换为数值和对所执行的数据集进行标准化,所以高斯支持向量机可能表现良好。 不过,我赞扬作者在接受这个挑战方面的勇气,这些愿意接受后续研究的人士可能会解决这些问题。...在本文中,作者列出了该项目的四个目标: 为选定的数据集合选择全局最佳分类器 根据其准确性对每个分类器和家族进行排序 对于每个分类器,要确定其达到最佳准确度的概率,以及其准确度与最佳准确度之间的差异 要评估改变数据集属性
今天新出了一篇很有意思的文章,来自香港大学、牛津大学、字节跳动的研究人员对合成数据是否对图像分类有帮助进行了细致研究,相信结论会给我们一些启发。...,大家都并不陌生,对图像进行几何变换(旋转、裁剪、翻转),对比度拉伸,甚至图像的混合,已被证明对图像分类有帮助。...但作者此处研究的是对近年来大火的图像生成模型得到的合成数据,这个领域发展很快,出现了很多生成质量很高的基于文本生成图像的优秀方法,比如扩散模型等,除了生成数据量可以无限,这种生成模型也可以在语义层次方便的增加合成数据的多样性...作者通过三个角度来研究基于“文本-图像”这种生成方法得到的合成数据是否对图像分类有帮助,包含对零样本图像分类、少样本图像分类、迁移学习。...零样本(zero-shot)图像分类,训练集不含要分类的类别,但有新类别的描述,以下表格是作者在17个数据集上的测试结果(具体实验方法可以查看原文): 可以发现性能获得了大幅提升,top-1精度平均提升了
加州大学伯克利分校的一项新研究表明,AI的进步已经对健康数据的隐私造成了新的威胁。...Aswani表明,使用AI,人们可以通过学习步数数据中的日常模式(比如活动跟踪器、智能手表和智能手机收集的模式)来识别个体,并将其与人口统计数据相关联。...对超过1.5万名美国人长达两年的数据进行挖掘,得出的结论是,与1996年《健康保险可携带性和问责法案》(HIPAA)相关的隐私标准需要重新修改。...它应该是匿名数据,但它们的整个业务模型是找到一种方法,将姓名附加到这些数据并出售。” Aswani担心随着AI的进步,公司更容易获得健康数据,公司以非法或不道德的方式使用它的诱惑将会增加。...Aswani表示,“理想情况下,我希望从中看到的是保护健康数据的新法规或规则,但实际上,现在有一股甚至削弱监管的强大力量。例如,HIPAA的规则制定小组要求对增加数据共享提出意见。
领取专属 10元无门槛券
手把手带您无忧上云