首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    第二章--第五篇:闭合式对话系统

    对话系统作为人机交互领域的重要研究方向,在现实生活和技术领域具有广泛的应用。它的重要性体现在以下几个方面。 首先,对话系统能够提供自然、直观的人机交互方式。传统的人机交互方式主要依靠键盘、鼠标等输入设备,但对于一些用户,使用自然语言进行对话更加便捷和直观。对话系统通过语音识别和自然语言处理技术,能够理解用户的语言输入,并以自然语言的形式回复用户,使用户能够像与人类对话一样与计算机交流。 其次,对话系统在实现智能个人助理、智能客服和虚拟人物等领域具有重要应用。智能个人助理可以帮助用户处理日常事务、提供个性化的推荐和建议,提升用户的生活品质。智能客服能够为用户提供实时的技术支持和服务,提高客户满意度。虚拟人物则能够与用户进行情感交流、提供娱乐和教育等功能。 此外,对话系统在知识获取和信息检索方面发挥着重要作用。对话系统可以与用户进行语义理解和意图识别,从海量的数据中提取有用的信息,为用户提供准确、实时的答案和解决方案。对话系统还可以通过与用户的对话交互,逐步获取并更新知识库,实现知识的持续积累和更新。 最后,对话系统的发展也推动了人工智能技术的进步。为了实现对话系统的自动化、智能化,需要运用自然语言处理、机器学习、深度学习等前沿技术。对话系统的研究和应用促进了这些技术的发展,提升了人工智能在其他领域的应用水平。

    05

    第三章--第一篇:什么是情感分析?

    情感分析是一种自然语言处理技术,旨在识别和理解文本中表达的情感、情绪和情感倾向。它利用计算机算法和模型来分析文本中的情感表达,以确定文本的情感状态,例如正面、负面或中性。情感分析可以帮助我们理解人们在文本中表达的情感态度,从而揭示用户对产品、服务、事件或主题的情感倾向和观点。 情感分析在自然语言处理领域具有重要性和广泛应用。首先,情感分析可以帮助企业了解用户对其产品和服务的情感反馈。通过分析用户在社交媒体、在线评论和调查问卷中的情感表达,企业可以了解用户对其产品的喜好、满意度和不满意度,从而进行改进和优化。 其次,情感分析在舆情监测和品牌管理中发挥关键作用。通过分析公众对特定事件、品牌或产品的情感反馈,可以及时了解公众对品牌形象的看法,从而进行舆情应对和品牌形象的管理。此外,情感分析在社交媒体挖掘、市场调研和消费者洞察方面也具有广泛的应用。通过分析用户在社交媒体平台上的情感表达,可以了解用户对不同产品、话题和事件的看法和情感态度,为市场调研和推广活动提供有价值的信息。 本文旨在介绍情感分析的概念和定义,强调情感分析在自然语言处理领域的重要性和应用广泛性。同时,我们将探讨情感分析的方法和技术,分析其在不同领域的应用,并讨论情感分析面临的挑战和未来发展方向。

    03

    2019腾讯犀牛鸟精英人才培养计划课题介绍(七)—自然语言处理

    “ 精英人才培养计划是一项校企联合人才培养项目,入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养。培养期间,学生将获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将引进沟通技巧、商业分析、创新思维等定制课程,定期举办线上线下交流活动,全面提升学生综合素质。入选学生还将获得线上实名社群平台“十分精英圈”的在线访问权限,结识志同道合的科研伙伴,获取业界信息及资源。 ” 今年共有10大方向 81个子课题供大家选择 总有一

    01

    从「对话即服务」到「服务即对话」——JDDC 大赛圆满落幕 京东助力智能对话产学研用联合发展

    10月18日,全球首届任务导向型多轮对话系统挑战赛 - JDDC 大赛总决赛正式落下帷幕。经过激烈角逐,共有 6 只队伍进入决赛技术答辩环节,最终来自复旦大学的「南苏州路与圆明园路交叉口」队获得此次大赛冠军,独得 50W 元奖金激励。此次冠军队在比赛中使用了语义匹配模型,借助额外的外部数据挖掘和情感分析技术,有机地将不同方法整合在一个系统的架构里。这大大提升了方案的实际落地可行性,将这套技术方案应用于京东智能客服场景,能够进一步提升用户体验和满意度。决赛还有多位人工智能领域技术大咖到场,共同探讨了智能对话的未来发展之路。

    02

    如何借助 LLM 设计和实现任务型对话 Agent

    在人工智能的快速发展中,任务型对话 Agent 正成为提升用户体验和工作效率的关键技术。这类系统通过自然语言交互,专注于高效执行特定任务,如预订酒店或查询天气。尽管市场上的开源框架如 Rasa 和 Microsoft Bot Framework 在对话理解和管理方面已经取得了不错的进展,但仍存在一定的局限性,包括对大量领域数据的依赖、对固定模板的依赖,以及在个性化服务和复杂任务处理方面的不足。大型语言模型(LLM)的兴起为任务型对话 Agent 的设计和开发带来了新机遇。LLM 强大的语言理解和生成能力,能够有效提高对话系统的准确性和用户体验。得益于这些特点,我们有机会进一步简化任务型对话 Agent 的开发流程,并显著提高开发效率。本文将重点介绍由 Gluon Meson 平台孵化的创新框架——Thought Agent,探讨如何利用大型语言模型来设计和实现任务型对话 Agent 。该框架已在一家大型银行的智能对话 Agent 项目中得到成功应用。本文旨在为读者提供新的视角,帮助快速构建以 LLM 为辅助的任务型 Agent。

    01

    让机器说人话、开放域对话挑战思考,两位专家畅聊下一代智能对话系统

    为了推动 AI 技术的应用创新,促进人工智能领域的学术交流、人才培养,打造人工智能的人才交流平台与产业生态圈,中国人工智能学会联合杭州市余杭区人民政府联合发起了首届全球人工智能技术创新大赛,并得到了阿里云、OPPO 等头部科技企业的积极参与和支持。阿里云天池平台为本次大赛提供平台和算力支撑。 AI青年说是大赛主办方为提升青年开发者对 AI 的认识而主办的系列活动,该活动邀请知名青年学者,探讨理论研究与应用实践中的热点话题。4月26日,AI青年说将迎来第二期直播活动,主题为「如何摘取 AI 皇冠上的 NL

    03
    领券