首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark SQL——SQL和pd.DataFrame的结合体

导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...,与pandas.DataFrame极为相近,适用于体量中等的数据查询和处理。...:这是PySpark SQL之所以能够实现SQL中的大部分功能的重要原因之一,functions子类提供了几乎SQL中所有的函数,包括数值计算、聚合统计、字符串以及时间函数等4大类,后续将专门予以介绍...这里补充groupby的两个特殊用法: groupby+window时间开窗函数时间重采样,对标pandas中的resample groupby+pivot实现数据透视表操作,对标pandas中的pivot_table...SQL查询一样完成相应SQL操作。

10K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    通过名为PySpark的Spark Python API,Python实现了处理结构化数据的Spark编程模型。 这篇文章的目标是展示如何通过PySpark运行Spark并执行常用函数。...10、缺失和替换值 对每个数据集,经常需要在数据预处理阶段将已存在的值替换,丢弃不必要的列,并填充缺失值。pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。...dataframe.coalesce(1).rdd.getNumPartitions() 12、嵌入式运行SQL查询 原始SQL查询也可通过在我们SparkSession中的“sql”操作来使用,这种...SQL查询的运行是嵌入式的,返回一个DataFrame格式的结果集。...API以RDD作为基础,把SQL查询语句转换为低层的RDD函数。

    13.7K21

    PySpark UD(A)F 的高效使用

    需要注意的一件重要的事情是,除了基于编程数据的处理功能之外,Spark还有两个显著的特性。一种是,Spark附带了SQL作为定义查询的替代方式,另一种是用于机器学习的Spark MLlib。...1.UDAF 聚合函数是对一组行进行操作并产生结果的函数,例如sum()或count()函数。用户定义的聚合函数(UDAF)通常用于更复杂的聚合,而这些聚合并不是常使用的分析工具自带的。...所有 PySpark 操作,例如的 df.filter() 方法调用,在幕后都被转换为对 JVM SparkContext 中相应 Spark DataFrame 对象的相应调用。...执行查询后,过滤条件将在 Java 中的分布式 DataFrame 上进行评估,无需对 Python 进行任何回调!...DataFrame的转换 from pyspark.sql.types import MapType, StructType, ArrayType, StructField from pyspark.sql.functions

    19.7K31

    Spark SQL实战(04)-API编程之DataFrame

    2.2 Spark SQL的DataFrame优点 可通过SQL语句、API等多种方式进行查询和操作,还支持内置函数、用户自定义函数等功能 支持优化器和执行引擎,可自动对查询计划进行优化,提高查询效率...熟练程度:如果你或你的团队已经很熟悉Python,那么使用PySpark也许更好一些,因为你们不需要再去学习新的编程语言。相反,如果已经对R语言很熟悉,那么继续使用R语言也许更为方便。...Spark SQL用来将一个 DataFrame 注册成一个临时表(Temporary Table)的方法。之后可使用 Spark SQL 语法及已注册的表名对 DataFrame 进行查询和操作。...一旦临时表被注册,就可使用 SQL 或 DSL 对其查询。...先对DataFrame使用.limit(n)方法,限制返回行数前n行 然后使用queryExecution方法生成一个Spark SQL查询计划 最后使用collectFromPlan方法收集数据并返回一个包含前

    4.2K20

    Spark SQL

    该命令或查询首先进入到驱动模块,由驱动模块中的编译器进行解析编译,并由优化器对该操作进行优化计算,然后交给执行器去执行,执行器通常的任务是启动一个或多个MapReduce任务。...如图所示描述了用户提交一段SQL查询后,Hive把sQL 语句转化成MapReduce任务进行执行的详细过程。...2014年6月1日Shark项目和Spark SQL项目的主持人Reynold Xin宣布:停止对Shark的开发,团队将所有资源放在Spark SQL项目上,至此,Shark的发展画上了句号,但也因此发展出两个分支...Spark SQL执行计划生成和优化都由Catalyst(函数式关系查询优化框架)负责。...步骤如下: 下面是利用Spark SQL查询people.txt的完整代码: >>> from pyspark.sql.types import * >>> from pyspark.sql

    8210

    SQL、Pandas和Spark:这个库,实现了三大数据分析工具的大一统

    导读 看过近期推文的读者,想必应该知道笔者最近在开一个数据分析常用工具对比的系列,主要是围绕SQL、Pandas和Spark三大个人常用数据分析工具,目前已完成了基本简介、数据读取、选取特定列、常用数据操作以及窗口函数等...02 三大数据分析工具灵活切换 在日常工作中,我们常常会使用多种工具来实现不同的数据分析需求,比如个人用的最多的还是SQL、Pandas和Spark3大工具,无非就是喜欢SQL的语法简洁易用、Pandas...以SQL中的数据表、pandas中的DataFrame和spark中的DataFrame三种数据结构为对象,依赖如下几个接口可实现数据在3种工具间的任意切换: spark.createDataFrame...() # 实现从spark.DataFrame注册为一个临时SQL表 spark.sql() # 实现从注册临时表查询得到spark.DataFrame 当然,pandas自然也可以通过pd.read_sql...3)pd.DataFrame转换为spark.DataFrame ? 4)spark.DataFrame注册临时数据表并执行SQL查询语句 ?

    1.8K40

    sql server 使用函数辅助查询

    函数是所有语言系统下都具备的内部数据处理过程,SQL SERVER也同样内置了许多函数。在SQL SERVER中,函数是由一个或多个T-SQL语句组成的子程序。利用函数可以简化数据的处理操作。...例如: SELECT ABS(-3.0), ABS(2.0),ABS(0.0) 2、AVG([ALL|DISTINCT]numeric_expression)        该函数返回查询出的一组数据的平均值...例如: SELECT AVG(grade) from score where cno=1 3、COUNT([ALL | DISTINCT]expression | * )       该函数返回查询出的表达式数...当 int_expression2 非零时,表示用int_expression1表示的精度对numeric_expression进行截短。...SELECT LEN(‘ SQL‘),LEN(LTRIM(‘ SQL‘)) 15、RTRIM(chracter_expression)   该函数返回删除字符串右端空格后的字符串。

    2K40

    总要到最后关头才肯重构代码,强如spark也不例外

    使用DataFrame我们可以非常方便地对整张表进行一些类似SQL的一些复杂的处理。...这里的Hive可能很多人不太熟悉,它是Hadoop家族结构化查询的工具。将hadoop集群中的数据以表结构的形式存储,让程序员可以以类SQL语句来查询数据。看起来和数据库有些近似,但原理不太一样。...这里的select其实对应的是SQL语句当中的select,含义也基本相同,不同的是我们是通过函数进行调用的而已。 我们可以在select当中传入我们想要查找的列名。 ?...我们把下图当中的函数换成filter结果也是一样的。 ? 另外一种操作方式稍稍复杂一些,则是将DataFrame注册成pyspark中的一张视图。...结尾 今天这篇文章我们一起来看了pyspark当中目前为止最常用的数据处理工具——DataFrame,还简单了解了一下它和RDD相比的性能优势以及它简单的查询语法的使用方法。

    1.2K10
    领券