首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将 SQL Server 数据库恢复到不同的文件名和位置

如果您要从该数据库的备份还原现有数据库,则不需要这样做,但如果您要从具有不同文件位置的不同实例还原数据库,则可能需要使用此选项。 RESTORE ......WITH MOVE 选项将让您确定数据库文件的名称以及创建这些文件的位置。在使用此选项之前,您需要知道这些文件的逻辑名称以及 SQL Server 的位置。...如果已经存在另一个使用您尝试还原的相同文件名的数据库并且该数据库处于联机状态,则还原将失败。...但是如果数据库由于某种原因不在线并且文件没有打开,如果你不使用 WITH MOVE 选项,恢复将覆盖这些文件,所以要小心你不要意外覆盖好的数据库文件。...,但我们希望将数据文件放在“G:\SQLData”文件夹中,将事务日志文件放在“H:\SQLLog”文件夹中。

1.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【汇编语言】包含多个段的程序(二)—— 将数据、代码、栈放入不同的段

    存在的两个问题 在前面的内容中,我们在程序中用到了数据和栈,将数据、栈和代码都放到了一个段里面。我们在编程的时候要注意何处是数据,何处是栈,何处是代码。...示例代码 具体做法如下面的程序所示,这个程序将数据、栈和代码放到了不同的段中。...3.1.1 定义多个段的方法 这点,我们从程序中可明显地看出,定义一个段的方法和前面所讲的定义代码段的方法没有区别,只是对于不同的段,要有不同的段名。...ds,data”是错误的,因为8086CPU不允许将一个数值直接送入段寄存器中。...”段中的数据,将“stack”当做栈了呢?

    9710

    将机器学习、人工智能、数据挖掘融合的Testin 2.0有哪些不同之处

    这其中有不同类型的企业,有希望借助技术来提升业务的互联网企业,有互联网+需求的传统企业,以及喜欢免费服务创业企业。...最近Testin2.0也将机器学习、人工智能、数据挖掘融合到原有产品中让测试效果有更大的提升。...Testin云测成立于2011年,最早是面向开发者的应用测试平台,早期的客户更多是互联网行业为主,现在越来越多的传统企业也成为Testin的客户。...按王军的话讲,这也是把之前一直在做的东西产品化,逐步将能力提供,其中有三个核心要素机器学习、人工智能、数据挖掘。...1.0时Testin只做测试一件事,从测试中找到规律,学习上一次测试的路径是否正确,这是一个深入学习的过程;结合人工智能,包括文字识别、图像识别等进行植入;最后通过数据挖掘进行分析提供一些建议。

    66380

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。.../world-happiness-report-2019.csv’) df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”:...对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    2.5K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    本文经AI新媒体量子位(QbitAI)授权转载,转载请联系出处 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。.../world-happiness-report-2019.csv’) df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={“Country (region)”: “Country”, “Log of GDP\nper capita...对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。.../world-happiness-report-2019.csv’) df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={“Country (region)”: “Country”, “Log of GDP\nper capita...对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    2.6K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    导读:数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。.../world-happiness-report-2019.csv') df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={"Country (region)": "Country", "Log of GDP\nper capita...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    1.7K30

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    整理 | 晓查 来自 | 量子位 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。.../world-happiness-report-2019.csv’) df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”:...对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    1.8K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 | 公众号 QbitAI 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。.../world-happiness-report-2019.csv’) df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”:...对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    1.9K10

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。.../world-happiness-report-2019.csv’) df.head(3) 这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): ?...数据帧中一些列的名称比较冗长,可以重命名使其更加简洁: df.rename(columns={“Country (region)”: “Country”, “Log of GDP\nper capita...对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色: df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter...对数坐标 如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture。

    1.7K10

    seaborn的介绍

    一个分类变量将数据集拆分为两个不同的轴(面),另一个确定每个点的颜色和形状。 所有这一切都是通过单次调用seaborn函数完成的relplot()。...这些表示在其底层数据的表示中提供不同级别的粒度。在最精细的级别,您可能希望通过绘制散点图来查看每个观察,该散点图调整沿分类轴的点的位置,以使它们不重叠: ?...每个不同的图形级别图kind将特定的“轴级”功能与FacetGrid对象组合在一起。例如,使用scatterplot()函数绘制散点图,并使用barplot()函数绘制条形图。...希望seaborn的高级界面和matplotlib深度可定制性的结合将使您能够快速浏览数据并创建可定制为出版品质最终产品的图形。...例如,时间序列数据有时与每个时间点一起存储为同一观察单元的一部分并出现在列中。

    4K20

    Android性能优化案例研究(上)

    这段数据包含了一个有三列数据的表,应用的每个window(窗口)都有一个这样 的表。为了使用这个数据,你可以简单的将这个表拷到你最喜欢的电子制表软件中,从而生成一个数据堆叠的列图。...以下这个图就是我的测量结果。 ? 每一列给出了每一帧花在渲染上的时间估计: “Draw”是指Java层用在创建“display lists”(显示列表)上的时间。...“Execute”是指将一帧图像交给合成器(compositor)的时间。这部分占用的时间通常比较少 提醒: 要以60fps的帧率进行平滑的渲染,每一帧所占用的时间需要少于16ms。...重绘是必然的,但太多的重绘 就是个问题。设备的数据传输带宽是有限的,当重绘使得你的应用需要更多的带宽时,性能就会下降。不同的设备能够承担的重绘的代价是不同的。 最佳的准则是重绘的最大次数不能超过两次。...前两个可以在ADT工具或者独立的monitor工具中找到,最后一个是在开发者选项的一部分。 Show GPU Overdraw会在屏幕上画不同的颜色来辨别重绘发生在哪儿,重绘了几次。

    1.6K10

    python可视化之seaborn

    jointplot() 双变量关系图 2. pairplot() 变量关系组图 3. distplot() 直方图,质量估计图 4. kdeplot() 核函数密度估计图 5. rugplot() 将数组中的数据点绘制为轴上的数据...用法是传入dataframe的一个列名,seaborn就会根据这一列里面每个值都分别画图 我们用Titanic数据集来看看,我们想知道不同社会等级(pclass)中船费(fare)的平均值是多少,这其中幸存的人和不幸的人又有多少...col/row 分列/分行画图 这个参数跟hue一样,都是设置分组画图的,不同之处是hue的分组仍然在同一张图中,col参数会将每个分组画在一行的多个列中,row参数会将每个分组画在一列的多个行中。...size是设置数据点的大小,多用于散点图,sizes指定了大小的范围。 style传入的是dataframe的一个列名,则会根据这一列的每个值进行分组,然后每个组使用不同的样式绘图。...8,宽为4的图像,注意,这里没有指定图要画在哪张纸上,这是因为matplotlib生成一张纸之后,也就指定了当前绘图将绘在这张纸上,会覆盖之前的figure 用plt.subplot(nrows,ncols

    2.4K20

    手摸手教你数据可视化!(附实例讲解)

    作者:CrescentAI,华南理工大学,Datawhale优秀学习者 前言 本文对课程数据集及泰坦尼克号数据集进行了实例讲解,一步一步带你绘制数据可视化中常用的五种图形,并对数据间可能存在的相关性做出了阐述...yw.columns = yw.iloc[0] #将学校字段转换成列索引 yw1 = yw.drop("学校",axis=0) #删多余的行信息 yw1 ?...将多个学科成绩画到一副图中 data1 ? ?...不同票价的人生存和死亡人数分布情况 # 排序后绘折线图 fare_sur = text.groupby(['Fare'])['Survived'].value_counts().sort_values(...不同的票价所反映出来的生存人数是非常明显的,票价低的人死亡数量高是因为离甲板远,且逃生机会大大降低。

    83120

    NumPy Beginners Guide 2e 带注释源码 九、使用 Matplotlib 绘图

    ]).astype(float)) func1 = func.deriv(m=1) x = np.linspace(-10, 10, 30) y = func(x) y1 = func1(x) # 将原函数绘制为红色的散点...plt.subplot(311) # 将原函数绘制为红色曲线 plt.plot(x, y, 'r-') plt.title("Polynomial") # 三行一列的第二个位置 plt.subplot...(312) # 将一阶导函数绘制为蓝色三角 plt.plot(x, y1, 'b^') plt.title("First Derivative") # 三行一列的第三个位置 plt.subplot(313...) # 将一阶导函数绘制为绿色散点 plt.plot(x, y2, 'go') plt.title("Second Derivative") plt.xlabel('x') plt.ylabel('y'...Figure 实例,帧函数,数据序列,以及刷新间隔 # 每次刷新时,都会用数据序列的当前值调用帧函数 anim = animation.FuncAnimation(fig, update, generate

    70310

    教程 | 如何利用散点图矩阵进行数据可视化

    我们将看到如何为快速检查数据而创建默认散点图矩阵,以及如何为了更深入的分析定制可视化方案。...Seaborn 中的散点图矩阵 我们需要先了解一下数据,以便开始后续的进展。我们可以 pandas 数据帧的形式加载这些社会经济数据,然后我们会看到下面这些列: ?...每一行代表一个国家一年的观察数据,列代表变量(这种格式的数据被称作整洁数据,tidy data),其中有两个类别列(国家和洲)和四个数值列。...创建默认的散点图矩阵很简单:我们加载 seaborn 库,然后调用 pairplot 函数,向它传递我们的数据帧即可: # Seaborn visualization library import seaborn...当我们想要创建自定义函数将不同的信息匹配到该图时,使用 PairGrid 类的实际好处就会显露出来。例如,我可能希望在散点图上增加两个变量的皮尔逊相关系数。

    2.6K80

    盘一盘 Python 系列 - Cufflinks (下)

    字典:{column:color} 按数据帧中的列标签设置颜色 列表:[color] 对每条轨迹按顺序的设置颜色 ---- categories:字符串格式,数据帧中用于区分类别的列标签 x:字符串格式...,数据帧中用于 x 轴变量的列标签 y:字符串格式,数据帧中用于 y 轴变量的列标签 z:字符串格式,数据帧中用于 z 轴变量的列标签 (只适用 3D 图) text:字符串格式,数据帧用于显示文字的列标签...gridcolor:字符串格式,用于设定网格颜色 zerolinecolor:字符串格式,用于设定零线颜色 labels:字符串格式,将数据帧中的里列标签设为饼状图每块的标签,仅当 kind = pie...values:字符串格式,将数据帧中的列数据的值设为饼状图每块的面积,仅当 kind = pie 才适用。...第 11 到 13 行定义一个 DataFrame 值为第 9 行得到的 price 列表 行标签为第 8 行得到的 index 列表 列标签为第 6 行定义好的 columns 列表 处理过后,将每个股票的收盘价合并成一个数据帧

    4.6K10

    【Python】5种基本但功能非常强大的可视化类型

    使用数据可视化技术可以很容易地发现变量之间的关系、变量的分布以及数据中的底层结构。 在本文中,我们将介绍数据分析中常用的5种基本数据可视化类型。...我建议你仔细检查一下,因为在同一个任务上比较不同的工具和框架会帮助你学得更好。 让我们首先创建一个用于示例的示例数据帧。...我们首先将数据传递给图表对象。下一个函数指定绘图类型。encode函数指定绘图中使用的列。因此,在encode函数中写入的任何内容都必须链接到数据帧。...2.散点图 散点图也是一种关系图。它通常用于显示两个数值变量的值。我们可以观察它们之间是否有关联。 我们可以创建“val”和“val2”列的散点图,如下所示。...我们已经使用颜色编码来根据“cat”列分离数据点。mark_circle函数的size参数用于调整散点图中点的大小。 3.直方图 直方图用于显示连续变量的分布。

    2.1K20
    领券