thttp://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_HYPOXIA\tPGK1\tPDK1\tGBE1\tPFKL\tA" 'strsplit 函数将文本按照换行符切割...: x_split <- strsplit(x_line, "\t") 每个向量会被按照指定符号切割,每个向量会被转换为列表对象,列表中的元素为按照换行符拆开的一个个元素。...接着我们需要将该列表元素再进行一些处理: names(x_split) 将每个列表的第一个元素,...也就是通路名,作为列表名 x_split 列表中的前两个元素 # 这里 "[" 方法可以理解为 function(x) x[-...HALLMARK_MITOTIC_SPINDLE" [5] "HALLMARK_WNT_BETA_CATENIN_SIGNALING" [6] "HALLMARK_TGF_BETA_SIGNALING" 纯文本-> 数据框
= [name: string, age: bigint] 3.2 RDD转换为DataSet SparkSQL能够自动将包含有case类的RDD转换成DataFrame,case类定义了...= [name: string, age: bigint] 2)将DataSet转换为RDD scala> DS.rdd res11: org.apache.spark.rdd.RDD[Person]...Person 3)将DateFrame转化为DataSet scala> df.as[Person] res14: org.apache.spark.sql.Dataset[Person] = [age...[Person] = [name: string, age: bigint] 3)将DataSet转化为DataFrame scala> val df = ds.toDF df: org.apache.spark.sql.DataFrame...(1)导入隐式转换 import spark.implicits._ (2)转换 val testDF = testDS.toDF 4.2 DataFrame转DataSet (1)导入隐式转换 import
这个底层的探索:只要避免Python UDF,PySpark 程序将大约与基于 Scala 的 Spark 程序一样快。如果无法避免 UDF,至少应该尝试使它们尽可能高效。...它基本上与Pandas数据帧的transform方法相同。GROUPED_MAP UDF是最灵活的,因为它获得一个Pandas数据帧,并允许返回修改的或新的。 4.基本想法 解决方案将非常简单。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。
")的元素 44、在列表list1后添加元素1 45、将列表的所有元素添加到 StringBuilder 46、将列表的所有元素添加到 StringBuilder并指定分隔符为"," 47、获取列表索引为...、提取列表list1的后2个元素 63、列表list1转换为数组 64、list1转换为 Seq 65、list1转换为 Set 66、list1列表转换为字符串 67、list1列表反转 68、list1...列表排序 69、检测list1列表在指定位置1处是否包含指定元素a 70、列表list1转换为数组 元组(71-76) 71 创建一个元组Y1,内部含有zhangsan biejing 20 ...","Spark","Java" 78、遍历iter1,使用while循环并打印输出 79、定义一个迭代器iter2,数据为10,20,20,30,34,50,60 80、打印出iter2中的最大值 81...92.定义一个变长数组 a,数组类型为string,长度为0 93.向变长数组中添加元素spark 94.定义一个包含以下元素的变长数据,10,20,30,40,50 95.b数组删除元素50 96.在
创建后应用程序就可以从现有 RDD,Hive 表或 Spark 数据源创建 DataFrame。...spark 的 SparkSession,在命令行中可以直接引用即可: 1.2 创建Dataset Spark 支持由内部数据集和外部数据集来创建 DataSet,其创建方式分别如下: 1....互相转换 Spark 提供了非常简单的转换方法用于 DataFrame 与 Dataset 间的互相转换,示例如下: # DataFrames转Datasets scala> df.as[Emp] res1...: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields] # Datasets转DataFrames...scala> ds.toDF() res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields
早期,scala刚出现的时候,并没有怎么引起重视,随着Kafka和Spark这样基于scala的大数据框架的兴起,scala逐步进入大数据开发者的眼帘。scala的主要优势是它的表达性。...列表 列表是scala中最重要的、也是最常用的数据结构。...因为进行数据计算的时候,就是一个将一种数据类型转换为另外一种数据类型的过程。...[String] = List(hadoop hive spark flink flume, kudu hbase sqoop storm) // 使用map将文本行转换为单词数组 scala> a.map...(男 -> 2, 女 -> 1) 17.9 聚合操作 聚合操作,可以将一个列表中的数据合并为一个。
,也不想再维护一套python环境,基于此,开始将技术栈转到scala+spark; 如果你的情况也大致如上,那么这篇文章可以作为一个很实用的参考,快速的将一个之前用pyspark完成的项目转移到scala...Scala下实现,也就是通过Scala+SparkAPI实现整个机器学习流程以及结果解释分析; 根据需求分解任务如下: 学习scala基本语法、数据结构、IO等; 搭建Idea+scala+spark的本地开发环境...Range内的元素 print(idx+":"+marr(idx)+"\t") println() // 对于数组,取出其全部偶数,再乘以10返回新数组 // 写法1:也是一般的程序写法,这个过程中其实是将需求转换为程序思想...Spark默认没有启动Hadoop的,因此对应数据都在本地; 字符串如果用的是单引号需要全部替换为双引号; 两边的API名基本都没变,Scala更常用的是链式调用,Python用的更多是显式指定参数的函数调用...列表推导式可以由Scala的for (....) yield ....来替换,注意to和until的区别; 表达式部分千万千万不要用中文,都是泪啊,我是因为之前数据集中有一部分列是外部数据,用的中文,天坑
如果我们有这样的需求, 我们就可以使用flatMap( 此方法帮我们实现 先map 后flatten的操作) map是将列表中的元素转换为一个List 这是什么意思呢?...将文本行拆分成数组 再对数组进行扁平化 参考代码 // 定义文本行列表 scala> val a = List("hadoop hive spark flink flume", "kudu hbase...将文本行转换为单词数组 scala> a.map(x=>x.split(" ")) res5: List[Array[String]] = List(Array(hadoop, hive, spark,... flink, flume), Array(kudu, hbase, sqoop, storm)) // 扁平化,将数组中的 scala> a.map(x=>x.split(" ")).flatten...参考代码 scala> val a = List("hadoop hive spark flink flume", "kudu hbase sqoop storm") a: List[String]
将数据的中间结果放入到内存中(2014年递交给Apache,国内四年时间发展的非常好) 核心编程: Spark Core:RDD(弹性分布式数据集...: 自增 自减 三目 scala中的操作符实际上就是scala中方法的调用,只不过为了简洁期间,将方法的调用转换为中缀表达式...Int = #将数组的元素小写转大写 scala> var arr = Array("tom", "mary", "mike") ...res9: Int = 109 (*)柯里化 1)概念:柯里化是将方法或者函数中一个带有多个参数的列表拆分成多个小的参数列表(一个或者多个参数)的过程,并且将参数应用前面参数列表时返回新的函数...,该函数带有两个参数,而前面知识将方法sum的一部分转换为函数(既第二个列表参数),所以上面只带有一个参数 func: Int => (Int => Int) = <function1
,也不想再维护一套python环境,基于此,开始将技术栈转到scala+spark; 如果你的情况也大致如上,那么这篇文章可以作为一个很实用的参考,快速的将一个之前用pyspark完成的项目转移到scala...Scala下实现,也就是通过Scala+SparkAPI实现整个机器学习流程以及结果解释分析; 根据需求分解任务如下: 学习scala基本语法、数据结构、IO等; 搭建Idea+scala+spark的本地开发环境...内的元素 print(idx+":"+marr(idx)+"\t") println() // 对于数组,取出其全部偶数,再乘以10返回新数组 // 写法1:也是一般的程序写法,这个过程中其实是将需求转换为程序思想...Spark默认没有启动Hadoop的,因此对应数据都在本地; 字符串如果用的是单引号需要全部替换为双引号; 两边的API名基本都没变,Scala更常用的是链式调用,Python用的更多是显式指定参数的函数调用...列表推导式可以由Scala的for (....) yield ....来替换,注意to和until的区别; 表达式部分千万千万不要用中文,都是泪啊,我是因为之前数据集中有一部分列是外部数据,用的中文,天坑
val a = add 方法转换为函数 • 有时候需要将方法转换为函数,作为变量传递,就需要将方法转换为函数 • 使用_即可将方法转换为函数 参考代码 scala> def add(x:Int,y:Int...、也是最常用的数据结构。...将可变列表转换为不可变列表 7....[Int] = List(4, 5) 扁平化(压平) 扁平化表示将列表中的列表中的所有元素放到一个列表中。... 拉开:将一个包含元组的列表,解开成包含两个列表的元组 参考代码 scala> val a = List("zhangsan", "lisi", "wangwu") a: List[String]
转换为Dataset,可以通过隐式转, 要求RDD数据类型必须是CaseClass val dataset: Dataset[MovieRating] = ratingRDD.toDS() dataset.printSchema...} 09-[掌握]-toDF函数指定列名称转换为DataFrame SparkSQL中提供一个函数:toDF,通过指定列名称,将数据类型为元组的RDD或Seq转换为DataFrame,实际开发中也常常使用...范例演示:将数据类型为元组的RDD或Seq直接转换为DataFrame。...将数据类型为元组的RDD,转换为DataFrame val rdd: RDD[(Int, String, String)] = spark.sparkContext.parallelize(...无论是DSL编程还是SQL编程,性能一模一样,底层转换为RDD操作时,都是一样的:Catalyst 17-[掌握]-电影评分数据分析之保存结果至MySQL 将分析数据保持到MySQL表中,直接调用
所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快! 传统的数据分析中一般无非就是SQL,跟MapReduce。...通过反射确定(需要用到样例类) 创建一个样例类 scala> case class People(name:String, age:Int) 根据样例类将RDD转换为DataFrame scala>...") df: org.apache.spark.sql.DataFrame = [age: bigint, name: string] 将DataFrame转换为RDD scala> val dfToRDD...[name: string, age: bigint] 将DataSet转换为RDD scala> DS.rdd res11: org.apache.spark.rdd.RDD[Person] =...DataFrame与DataSet的互操作 DataFrame转DataSet 创建一个DateFrame scala> val df = spark.read.json("examples/src/main
._ // 将 MongoDB 中的数据加载进来,并转换为 DataFrame val ratingDF = spark .read .option("uri"...实现思路:通过 Spark SQL 读取评分数据集,通过 UDF 函数将评分的数据时间修改为月,然后统计每月商品的评分数。...3、将预测结果通过预测分值进行排序。 4、返回分值最大的 K 个商品,作为当前用户的推荐列表。 最后生成的数据结构如下:将数据保存到 MongoDB 的 UserRecs 表中。...._ // 将 MongoDB 中的数据加载进来,并转换为 RDD,之后进行 map 遍历转换为 三元组形式的 RDD,并缓存 val ratingRDD = spark ...._ // 将 MongoDB 中的数据加载进来,并转换为 RDD,之后进行 map 遍历转换为 RDD(样例类是 spark mllib 中的 Rating),并缓存 val ratingRDD
Apache Spark是一个大数据处理引擎,与MapReduce相比具有多个优势。通过删除Hadoop中的大部分样板代码,Spark提供了更大的简单性。...此外,由于Spark处理内存中的大多数操作,因此它通常比MapReduce更快,在每次操作之后将数据写入磁盘。 PySpark是Spark的Python API。...PySpark API将通过对文本文件的分析来介绍,通过计算得到每个总统就职演说中使用频率最高的五个词。 安装必备软件 安装过程需要安装Scala,它需要Java JDK 8作为依赖项。...本指南的这一部分将重点介绍如何将数据作为RDD加载到PySpark中。...flatMap允许将RDD转换为在对单词进行标记时所需的另一个大小。 过滤和聚合数据 1. 通过方法链接,可以使用多个转换,而不是在每个步骤中创建对RDD的新引用。
RDD简介 RDD,全称为Resilient Distributed Datasets(弹性分布式数据集),是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。...同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中,诸如map、flatMap、filter等转换操作实现了函数式编程模式,很好地契合了Scala的集合操作。...RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。 定义: 只读的,可分区的分布式数据集;数据集可全部或部分缓存在内存中,在一个App多次计算间重用, RDD是Spark的核心。...原生数据空间转RDD 原生的SCALA数据集合可以转换为RDD进行操作 包含一下两种方式 makeRDD parallelize 存储文件转RDD Partition(分区) 一份待处理的原始数据会被按照相应的逻辑切分成...n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度,所以理解Partition是了解spark背后运行原理的第一步。
尤其在Apache Spark这一大数据处理框架的推动下,Scala成为了大数据工程师和技术爱好者们学习的热门语言。...Scala与大数据 Scala与Apache Spark的紧密结合,使其成为大数据处理的首选语言。...模式匹配不仅限于类实例,还可以用于值、数组、列表等多种数据结构,大大增强了代码的表达力和可读性。...与Apache Spark 在大数据处理领域,Scala与Apache Spark的结合是其广泛应用的主要原因之一。...隐式转换可以自动将一种类型的值转换为另一种类型,而隐式参数则允许方法调用时自动提供某些参数。
问题导读 1.RDD转换为DataFrame需要导入哪个包? 2.Json格式的Dataset如何转换为DateFrame? 3.如何实现通过jdbc读取和保存数据到数据源?...文件夹里面是数据,其中有*00000*为数据文件。 [Scala] 纯文本查看 复制代码 ?...设置后将覆盖spark.sql.parquet.mergeSchema指定值。 runJsonDatasetExample函数 [Scala] 纯文本查看 复制代码 ?...我们来看官网 它是 JDBC database 连接的一个参数,是一个字符串tag/value的列表。于是有了下面内容 [Scala] 纯文本查看 复制代码 ?...VARCHAR(1024)") .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties) 上面分别都是将数据通过
尤其在Apache Spark这一大数据处理框架的推动下,Scala成为了大数据工程师和技术爱好者们学习的热门语言。...Scala与大数据Scala与Apache Spark的紧密结合,使其成为大数据处理的首选语言。...模式匹配不仅限于类实例,还可以用于值、数组、列表等多种数据结构,大大增强了代码的表达力和可读性。...与Apache Spark在大数据处理领域,Scala与Apache Spark的结合是其广泛应用的主要原因之一。...隐式转换可以自动将一种类型的值转换为另一种类型,而隐式参数则允许方法调用时自动提供某些参数。
领取专属 10元无门槛券
手把手带您无忧上云