首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中使用deepdiff对比json对象时,对比时如何忽略数组中多个不同对象的相同字段

最近忙成狗了,很少挤出时间来学习,大部分时间都在加班测需求,今天在测一个需求的时候,需要对比数据同步后的数据是否正确,因此需要用到json对比差异,这里使用deepdiff。...一般是用deepdiff进行对比的时候,常见的对比是对比单个的json对象,这个时候如果某个字段的结果有差异时,可以使用exclude_paths选项去指定要忽略的字段内容,可以看下面的案例进行学习:...那么如果数据量比较大的话,单条对比查询数据效率比较低,因此,肯呢个会调用接口进行批量查询,然后将数据转成[{},{},{}]的列表形式去进行对比,那么这个时候再使用exclude_paths就无法直接简单的排除某个字段了...从上图可以看出,此时对比列表元素的话,除非自己一个个去指定要排除哪个索引下的字段,不过这样当列表的数据比较多的时候,这样写起来就很不方便,代码可读性也很差,之前找到过一个用法,后来好久没用,有点忘了,今晚又去翻以前写过的代码记录...这里对比还遇到一个问题,等回头解决了再分享: 就这种值一样,类型不一样的,要想办法排除掉。要是小伙伴有好的方法,欢迎指导指导我。

91720
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...注意: 开箱即用的 PySpark API 支持将 JSON 文件和更多文件格式读取到 PySpark DataFrame 中。...JSON 文件 PySpark SQL 还提供了一种读取 JSON 文件的方法,方法是使用 spark.sqlContext.sql(“将 JSON 加载到临时视图”) 直接从读取文件创建临时视图 spark.sql...df2.write.json("/PyDataStudio/spark_output/zipcodes.json") 编写 JSON 文件时的 PySpark 选项 在编写 JSON 文件时,可以使用多个选项

    1.1K20

    独家 | 一文读懂PySpark数据框(附实例)

    Spark的惰性求值意味着其执行只能被某种行为被触发。在Spark中,惰性求值在数据转换发生时。 数据框实际上是不可变的。由于不可变,意味着它作为对象一旦被创建其状态就不能被改变。...数据框的数据源 在PySpark中有多种方法可以创建数据框: 可以从任一CSV、JSON、XML,或Parquet文件中加载数据。...我们将会以CSV文件格式加载这个数据源到一个数据框对象中,然后我们将学习可以使用在这个数据框上的不同的数据转换方法。 1. 从CSV文件中读取数据 让我们从一个CSV文件中加载数据。...这里我们会用到spark.read.csv方法来将数据加载到一个DataFrame对象(fifa_df)中。代码如下: spark.read.format[csv/json] 2....数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3.

    6K10

    Pyspark学习笔记(四)弹性分布式数据集 RDD(上)

    换句话说,RDD 是类似于 Python 中的列表的对象集合,不同之处在于 RDD 是在分散在多个物理服务器上的多个进程上计算的,也称为集群中的节点,而 Python 集合仅在一个进程中存在和处理。...①使用 sparkContext.parallelize() 创建 RDD 此函数将驱动程序中的现有集合加载到并行化 RDD 中。...Spark 将文本文件读入 RDD — 参考文献 sparkContext.textFile() 用于从 HDFS、S3 和任何 Hadoop 支持的文件系统读取文本文件,此方法将路径作为参数,并可选择将多个分区作为第二个参数...; sparkContext.wholeTextFiles() 将文本文件读入 RDD[(String,String)] 类型的 PairedRDD,键是文件路径,值是文件内容。...当我们知道要读取的多个文件的名称时,如果想从文件夹中读取所有文件以创建 RDD,只需输入带逗号分隔符的所有文件名和一个文件夹,并且上述两种方法都支持这一点。同时也接受模式匹配和通配符。

    3.9K10

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(上)

    区别在于,python集合仅在一个进程中存在和处理,而RDD分布在各个节点,指的是【分散在多个物理服务器上的多个进程上计算的】     这里多提一句,尽管可以将RDD保存到硬盘上,但RDD主要还是存储在内存中...\ .getOrCreate() sc = spark.sparkContext ①使用 sparkContext.parallelize() 创建 RDD 此函数将驱动程序中的现有集合加载到并行化...并可选择将多个分区作为第二个参数; sparkContext.wholeTextFiles() 将文本文件读入 RDD[(String,String)] 类型的 PairedRDD,键是文件路径,值是文件内容...当我们知道要读取的多个文件的名称时,如果想从文件夹中读取所有文件以创建 RDD,只需输入带逗号分隔符的所有文件名和一个文件夹,并且上述两种方法都支持这一点。同时也接受模式匹配和通配符。...①当处理较少的数据量时,通常应该减少 shuffle 分区, 否则最终会得到许多分区文件,每个分区中的记录数较少,形成了文件碎片化。

    3.9K30

    PySpark 读写 CSV 文件到 DataFrame

    本文中,云朵君将和大家一起学习如何将 CSV 文件、多个 CSV 文件和本地文件夹中的所有文件读取到 PySpark DataFrame 中,使用多个选项来更改默认行为并使用不同的保存选项将 CSV 文件写回...("path"),在本文中,云朵君将和大家一起学习如何将本地目录中的单个文件、多个文件、所有文件读入 DataFrame,应用一些转换,最后使用 PySpark 示例将 DataFrame 写回 CSV...注意: 开箱即用的 PySpark 支持将 CSV、JSON 和更多文件格式的文件读取到 PySpark DataFrame 中。...目录 读取多个 CSV 文件 读取目录中的所有 CSV 文件 读取 CSV 文件时的选项 分隔符(delimiter) 推断模式(inferschema) 标题(header) 引号(quotes) 空值...2.5 NullValues 使用 nullValues 选项,可以将 CSV 中的字符串指定为空。例如,如果将"1900-01-01"在 DataFrame 上将值设置为 null 的日期列。

    1.1K20

    Spark SQL

    该命令或查询首先进入到驱动模块,由驱动模块中的编译器进行解析编译,并由优化器对该操作进行优化计算,然后交给执行器去执行,执行器通常的任务是启动一个或多个MapReduce任务。...在创建DataFrame时,可以使用spark.read操作,从不同类型的文件中加载数据创建DataFrame。...例如: spark.read.text("people.txt"):读取文本文件people.txt创建DataFrame;在读取本地文件或HDFS文件时,要注意给出正确的文件路径。...,例如,把一个名称为df的DataFrame保存到不同格式文件中,方法如下: df.write.text("people.txt") df.write.json("people.json") df.write.parquet...中创建一个DataFrame,名称为peopleDF,把peopleDF保存到另外一个JSON文件中,然后,再从peopleDF中选取一个列(即name列),把该列数据保存到一个文本文件中。

    8210

    Spark SQL实战(04)-API编程之DataFrame

    ( "/Users/javaedge/Downloads/sparksql-train/data/people.json") // 查看DF的内部结构:列名、列的数据类型、是否可以为空...该 API 可能导致数据集的全部数据被加载到内存,因此在处理大型数据集时应该谨慎使用。...具体来说,这行代码使用了SparkSession对象中的implicits属性,该属性返回了一个类型为org.apache.spark.sql.SQLImplicits的实例。..._等包,并通过调用toDF()方法将RDD转换为DataFrame。而有了导入spark.implicits._后,只需要直接调用RDD对象的toDF()方法即可完成转换。...显然,在编写复杂的数据操作时,手动创建 Column 对象可能会变得非常繁琐和困难,因此通常情况下我们会选择使用隐式转换函数,从而更加方便地使用DataFrame的API。

    4.2K20

    PySpark SQL——SQL和pd.DataFrame的结合体

    ,文件包括Json、csv等,数据库包括主流关系型数据库MySQL,以及数仓Hive,主要是通过sprak.read属性+相应数据源类型进行读写,例如spark.read.csv()用于读取csv文件,...与spark.read属性类似,.write则可用于将DataFrame对象写入相应文件,包括写入csv文件、写入数据库等 3)数据类型转换。...,当接收列名时则仅当相应列为空时才删除;当接收阈值参数时,则根据各行空值个数是否达到指定阈值进行删除与否 dropDuplicates/drop_duplicates:删除重复行 二者为同名函数,与pandas...中的drop_duplicates函数功能完全一致 fillna:空值填充 与pandas中fillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各列指定不同填充 fill:广义填充 drop...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

    10K20

    别说你会用Pandas

    说到Python处理大数据集,可能会第一时间想到Numpy或者Pandas。 这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。...PySpark提供了类似Pandas DataFrame的数据格式,你可以使用toPandas() 的方法,将 PySpark DataFrame 转换为 pandas DataFrame,但需要注意的是...,这可能会将所有数据加载到单个节点的内存中,因此对于非常大的数据集可能不可行)。...PySpark处理大数据的好处是它是一个分布式计算机系统,可以将数据和计算分布到多个节点上,能突破你的单机内存限制。...", df["salary"] * 1.1) # 显示转换后的数据集的前几行 df_transformed.show(5) # 将结果保存到新的 CSV 文件中 # 注意:Spark

    12910

    Python+大数据学习笔记(一)

    PySpark使用 pyspark: • pyspark = python + spark • 在pandas、numpy进行数据处理时,一次性将数据读入 内存中,当数据很大时内存溢出,无法处理;此外...,很 多执行算法是单线程处理,不能充分利用cpu性能 spark的核心概念之一是shuffle,它将数据集分成数据块, 好处是: • 在读取数据时,不是将数据一次性全部读入内存中,而 是分片,用时间换空间进行大数据处理...pyspark: • 在数据结构上Spark支持dataframe、sql和rdd模型 • 算子和转换是Spark中最重要的两个动作 • 算子好比是盖房子中的画图纸,转换是搬砖盖房子。...有 时候我们做一个统计是多个动作结合的组合拳,spark常 将一系列的组合写成算子的组合执行,执行时,spark会 对算子进行简化等优化动作,执行速度更快 pyspark操作: • 对数据进行切片(shuffle...,dataType:该字段的数据类型, nullable: 指示该字段的值是否为空 from pyspark.sql.types import StructType, StructField, LongType

    4.6K20

    PySpark简介

    什么是PySpark? Apache Spark是一个大数据处理引擎,与MapReduce相比具有多个优势。通过删除Hadoop中的大部分样板代码,Spark提供了更大的简单性。...本指南介绍如何在单个Linode上安装PySpark。PySpark API将通过对文本文件的分析来介绍,通过计算得到每个总统就职演说中使用频率最高的五个词。...本指南的这一部分将重点介绍如何将数据作为RDD加载到PySpark中。...SparkContext对象表示Spark功能的入口点。 1. 从NLTK的文本文件集中读取,注意指定文本文件的绝对路径。...flatMap允许将RDD转换为在对单词进行标记时所需的另一个大小。 过滤和聚合数据 1. 通过方法链接,可以使用多个转换,而不是在每个步骤中创建对RDD的新引用。

    6.9K30

    如何快速成为一名优秀的YAML工程师?

    易于维护 – 可以将 YAML 文件添加到源控件中以跟踪更改。...灵活便捷 – 可以使用 YAML 创建更加复杂的结构(相对于使用命令行可以创建的结构) Yaml基础语法与技巧 开始符号: ---用于表示开始的符号,在一个文件中包含多个YAML设定的时候使用非常常见。...区块的字串用缩排和修饰词(非必要)来和其他资料分隔,有新行保留(使用符号|)或新行折叠(使用符号>)两种方式,一般用在较长的描绘性说明中 |表示保留区块中的回车换行 >表示将区块中的回车换行替换为空行,...null # 空值 !!set # 集合 !!omap, !!pairs # 键值列表或对象列表 !!...有新行保留(使用符号|)或新行折叠(使用符号>)两种方式 在单一档案中,可用连续三个连字号(---)区分多个档案 可选择性的连续三个点号(...)用来表示档案结尾(在流式传输时非常有用,不需要关闭流即可知道到达结尾处

    1.8K20

    0835-5.16.2-如何按需加载Python依赖包到Spark集群

    1.文档编写目的 在开发Pyspark代码时,经常会用到Python的依赖包。...在PySpark的分布式运行的环境下,要确保所有节点均存在我们用到的Packages,本篇文章主要介绍如何将我们需要的Package依赖包加载到我们的运行环境中,而非将全量的Package包加载到Pyspark...3.Pyspark中加载依赖包 1.在初始化SparkSession对象时指定spark.yarn.dist.archives参数 spark = SparkSession\ .builder\...) rdd.map(lambda x: fun(x)).distinct().collect() 4.通过上述的方式在执行Executor时加载Python的依赖包到运行环境中解决Pyspark对Packages...5.总结 1.存放在HDFS上的第三方依赖包可以存在多个,也可以将多个package包打包到一个zip包里。

    3.4K20

    使用Pandas_UDF快速改造Pandas代码

    Pandas_UDF介绍 PySpark和Pandas之间改进性能和互操作性的其核心思想是将Apache Arrow作为序列化格式,以减少PySpark和Pandas之间的开销。...输入数据包含每个组的所有行和列。 将结果合并到一个新的DataFrame中。...需要注意的是,StructType对象中的Dataframe特征顺序需要与分组中的Python计算函数返回特征顺序保持一致。...此外,在应用该函数之前,分组中的所有数据都会加载到内存,这可能导致内存不足抛出异常。 下面的例子展示了如何使用groupby().apply() 对分组中的每个值减去分组平均值。...级数到标量值,其中每个pandas.Series表示组或窗口中的一列。 需要注意的是,这种类型的UDF不支持部分聚合,组或窗口的所有数据都将加载到内存中。

    7.1K20

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    ", 12) PySpark 中 , 将 二元元组 中 第一个元素 称为 键 Key , 第二个元素 称为 值 Value ; 按照 键 Key 分组 , 就是按照 二元元组 中的 第一个元素 的值进行分组...方法工作流程 RDD#reduceByKey 方法 工作流程 : reduceByKey(func) ; 首先 , 对 RDD 对象中的数据 分区 , 每个分区中的相同 键 key 对应的 值 value...; 两个方法结合使用的结果与执行顺序无关 ; 可重入性 ( commutativity ) : 在多任务环境下 , 一个方法可以被多个任务调用 , 而不会出现数据竞争或状态错误的问题 ; 以便在并行计算时能够正确地聚合值列表...为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的 键 Key 对应的 值 Value 进行相加 ; 2、代码示例 首先 , 读取文件 , 将 文件转为 RDD 对象 , 该 RDD...对象中 , 列表中的元素是 字符串 类型 , 每个字符串的内容是 整行的数据 ; # 将 文件 转为 RDD 对象 rdd = sparkContext.textFile("word.txt") #

    76420
    领券