本文作为入门篇,就先不聊如何对声音(音频)、电影(视频)、指纹和人脸(图片)等数据进行向量数据构建啦。我们从最简单的文本数据上手,实现一个“基于向量检索技术的文本搜索功能”。...接下来,我将以我比较喜欢的小说 “哈利波特”为例,你可以根据自己的喜好调整要使用的文本数据。从网络上下载好要处理为向量的文本数据(txt 文档)。...为了方便后文中,我们更具象地了解向量数据库的资源占用,我们顺手查看下整理好的文本文件占磁盘空间是多少: du -hs ready.txt 5.5M ready.txt 使用模型将文本转换为向量...为了将文本转换为向量数据,我们需要使用能够处理文本嵌入的模型。...最后 我们已经搞定了“向量数据”,下一篇内容中,我们将一起了解如何使用 Faiss 来实现向量相似度检索功能。
在示例代码中,我们将睡眠数据从以小时为单位的数据更改为分钟。...如果同时具有数字和字符列,则尝试对数据进行舍入将导致错误。...(两个level) ifelse()语句可用于将数字列转换为离散列。...在前面的示例中,新列“sleep_measure”是一个字符向量。 如果您要进行总结或后续的绘制,则该列将按字母顺序排序。...NA 函数na_if()将特定值转换为NA。
引言 图是一种常见的数据结构,用于表示对象之间的关系。在图的表示方法中,邻接表是一种常用的形式,特别适用于稀疏图。 本实验将介绍如何使用邻接表表示图,并通过C语言实现图的邻接表创建。 2....无向图中的边是双向的,即从节点A可以到达节点B,同时从节点B也可以到达节点A。 b....表示 图可以用多种方式表示,常见的有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)两种形式。 邻接矩阵是一个二维数组,用于表示节点之间的连接关系。...对于有向图,邻接矩阵的元素表示从一个节点到另一个节点的边的存在与否;对于无向图,邻接矩阵是对称的。 邻接表是一种链表数组的形式,用于表示每个节点和与之相连的边。...实验内容 3.1 实验题目 将邻接矩阵存储转换为邻接表存储 (一)数据结构要求 邻接表中的顶点表用Head 数组存储,顶点表中元素的两个域的名字分别为 VerName和 Adjacent,边结点的两个域的名字分别为
对于Tensor数据类型而言,有的时候,我们需要改变向量的形状,以满足计算要求例如:向量的变形、转置、压缩、解压等,属于基本的向量维度变换操作下面将对向量的维度变换操作进行介绍【reshape()】在numpy...【t()】t()方法用于向量的转置转置是一种改变向量维度顺序的操作,通常用于交换矩阵的行和列。...在数学上,转置操作将矩阵的行转换为列,列转换为行import paddlea=paddle.reshape(paddle.arange(1,13),(3,4))b=paddle.t(a)print(a)...print(b)通过转置,原矩阵a从一个3*4矩阵变换成了4*3矩阵并且每一行的元素被换到了每一列即0轴和1轴进行了对调【transpose()】transpose()方法可以用于更加高维度的向量转置import...,第二个参数是一个元组,元组代表新向量的轴顺序原本的(0,1,2)轴顺序被调换为了(2,0,1)因此向量的形状也从(2,3,4)变成了(4,2,3)【expand()】`paddle.expand()是
换句话说,列向量表示k维度的新子空间内的距离。 从最小化和优化角度看同样的问题很有意思,因为它们都实现了减小维度的目标,但它是以不同的方式完成的。...其中q不再是一个向量而是一个矩阵。 原因是因为外部乘积(即变换算子)的总和等于矩阵乘法,因为它从向量增长到如下所示的矩阵: ? 为了将最大化问题转化为一般k情况,我们需要决定从矩阵中最大化什么。...trace操作的输出是特征值之和的kxk矩阵,但是argmax操作的输出是(dxk)Q矩阵,其中每列是X的X转置的特征向量。因此,我们获得最大k个特征向量。 投影数据为: ?...到目前为止,我们只致力于获得新维度的基础向量。但是,我们真正想要的是将原始数据投影到新维度上。PCA的最后一步是我们需要将Q的Q转置与原始数据矩阵相乘以获得投影矩阵。...我们从(dxk)Q矩阵开始,Q的Q转置导致dxd维度。通过乘以(dxn)X矩阵,投影矩阵是dxn。
从几何意义上看,向量加法相当于将两个向量首尾相接,得到的新向量是从第一个向量的起点指向第二个向量的终点。...矩阵转置改变了矩阵的行列结构,在一些算法中,如计算协方差矩阵时,需要对数据矩阵进行转置操作以便后续计算。...对于一个数据矩阵 ,其协方差矩阵 ,这里就用到了矩阵转置,通过转置将数据矩阵的行向量转换为列向量,以便计算不同特征之间的协方差。 2.3.矩阵的秩、逆、特征值与特征向量 2.3.1.矩阵的秩 1....设数据矩阵 ( 个样本, 个特征),首先计算协方差矩阵 。然后求 的特征值 和对应的特征向量 。将特征值从大到小排序,选取前 个特征值对应的特征向量组成投影矩阵 。则降维后的数据 。...从向量空间的角度看,PCA 的原理是在原始数据所在的 维向量空间中,找到一组新的正交基(即特征向量),使得数据在这些基向量上的投影能够最大程度地反映数据的方差。
sapply:与 lapply 类似,但它自动将结果转换为向量、矩阵或数组。 apply:用于对矩阵或数组的行、列或其他维度进行循环操作。...❝如果想要将结果转换为向量、矩阵或数组,可以使用 sapply 函数。它的基本语法与 lapply 类似,只是将 lapply 替换为 sapply 即可。...例如,下面的代码使用 apply 函数求出矩阵中每一列的和: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数求出矩阵中每一列的和 apply(x, 2,...函数求出矩阵中每一列的最大值: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数求出矩阵中每一列的最大值 apply(x, 2, max) [1] 3...6 9 例子 2:使用 apply 函数将矩阵转置 下面的代码使用 apply 函数将矩阵转置: # 创建矩阵 x <- matrix(1:9, nrow = 3) # 使用 apply 函数将矩阵转置
可以通过 matrix(data, nrow, ncol, byrow=FALSE, dimnames=NULL) 函数创建矩阵,其中data是构成矩阵的向量,nrow和ncol分别定义矩阵的行数和列数...,byrow参数决定数据是按行还是按列填充,dimnames参数则用于为矩阵添加行名和列名。...数组是对向量和矩阵的扩展,适用于处理更复杂的数据。 (四)因子 因子是一种专门用于表示分类或有序类别数据的R数据类型。因子将分类数据编码为整数,并保存这些整数与原始类别标签之间的映射关系。...7.因子函数: factor() 函数用于将字符向量转换为有序或无序因子,便于进行分类分析。...可以通过索引访问矩阵元素,如A[2, 3];创建单位矩阵可以使用diag(n);特定元素的矩阵填充示例已经给出。 9.矩阵转置函数: t()函数 可以对矩阵进行转置,如t(A)将矩阵A转置。
计算机会将卷积核转换成等效的矩阵,将输入转换为向量。通过输入向量和卷积核矩阵的相乘获得输出向量。输出的向量经过整形便可得到我们的二维输出特征。具体的操作如下图所示。...我们将一个1×16的行向量乘以16×4的矩阵,得到了1×4的行向量。那么反过来将一个1×4的向量乘以一个4×16的矩阵是不是就能得到一个1×16的行向量呢? 没错,这便是转置卷积的思想。...所以我们也来尝试一下可视化转置卷积。前面说了在将直接卷积向量化的时候是将卷积核补零然后拉成列向量,现在我们有了一个新的转置卷积矩阵,可以将这个过程反过来,把16个列向量再转换成卷积核。...以第一列向量为例,如下图: 这里将输入还原为一个2×2的张量,新的卷积核由于只有左上角有非零值直接简化为右侧的形式。...如下图: 总结一下将转置卷积转换为直接卷积的步骤:(这里只考虑stride=1,padding=0的情况) 设卷积核大小为k*k,输入为方形矩阵 对输入进行四边补零,单边补零的数量为k-1 将卷积核旋转
3、利用文件建立矩阵 当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。同时可以利用命令 reshape对调入的矩阵进行重排。...给变量X赋空矩阵的语句为X=[]。注意,X=[]与clear X不同,clear是将X从工作空间中删除,而空矩阵则存在于工作空间中,只是维数为0。...3、矩阵的转置与旋转 (1) 矩阵的转置 转置运算符是单撇号(’)。 (2) 矩阵的旋转 利用函数rot90(A,k)将矩阵A旋转90º的k倍,当k为1时可省略。...4、矩阵的翻转 对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,…,依次类推。...可以通过命令gf(data,m)将数据限制在有限域中,这样如矩阵求逆、相加、相乘等运算就均是基于有限域GF(m)的运算了。 那么如何将有限域元素转换为double型的呢?
从列视图角度重新理解方程组的解,即向量b是否包含在A的列空间内,或b能否用A的列向量线性表出。 2、 矩阵消元:行空间角度。...其中,行变换为左乘,列变换为右乘。...如果A·B = B·A = I,则A与B互为可逆矩阵。若矩阵A可逆,则|A|不等于0,或者Ax=0只有零解。逆矩阵可以通过将[A|E]全用行变换或全用列变换为[E|B]求得。...对于任意置换矩阵, ? ,即 ? 。矩阵转置就是互换A的行和列,其中,若A转置·A=B,则B一定为对称矩阵。向量空间Rn,由全体包含n个元素的向量构成,全体向量对数乘和加减运算封闭。...另外,列空间和零空间必须满足数乘和加减封闭。 7、 Ax=0主变量和特解:求解Ax=0首先要使用高斯消元将A转换为标准行阶梯矩阵U,求解Ux=0的解空间即A的零空间不变。
6.您可以组合使用空格和分号来创建一个矩阵,即包含多行多列的数组。输入矩阵时,您必须逐行输入它们。...6.linspace 和 : 运算符都可创建行向量。但是,您可以使用转置运算符 (') 将行向量转换为列向量。...x = 1:3; x = x' x = 1 2 3 任务 使用转置运算符将 x 从行向量转置为列向量。 7.您可以通过在一条命令中创建行向量并将其全部转置来创建列向量。...如果您要创建从 1 到 2π 的等间距向量,其中包含 100 个元素,您会使用 linspace 还是 :?...将结果赋给名为 x 的变量。 3.任务 使用 zeros 函数创建一个包含 6 行 3 列 (6×3) 的全零矩阵。将结果赋给名为 x 的变量。 附加练习 如何知道现有矩阵的大小?
假设有一个从 3 到 100 的步长为 7 的整数向量,那么第 5 个数的值是多少呢?...因子在 R 中非常重要,它决定了数据的展示和分析方式。数据存储时因子经常以整数向量形式存储。所以在进行数据分析之前,经常需要将它们用函数 factor( ) 转换为因子。...常见的矩阵运算都可以在R 中实现,如矩阵加法、矩阵乘法、求逆矩阵、矩阵转置、求方阵的行列式、求方阵的特征值和特征向量等。...dim(mat1) # 32 dim(mat2) # 23 mat1 %*% mat2 1.3.3 转置:t( ) 矩阵的转置运算就是把矩阵的行和列互换。...在进行数据分析时,分析者需要对数据的类型熟稔于心,因为数据分析方法的选择与数据的类型是有密切联系的。R 提供了一系列用于判断某个对象的数据类型的函数,还提供了将某种数据类型转换为另一种数据类型的函数。
众所周知,PCA(principal component analysis)是一种数据降维的方式,能够有效的将高维数据转换为低维数据,进而降低模型训练所需要的计算资源。...前面说了,pca就是将高维(很多列属性)数据转换为低维(较少列)数据的方法,同时保留大部分信息(可以用保留的信息准确预测)。但是我们可能会想:如果我不压缩的话,那我不就可以有100%的数据吗?...新的坐标(-2, 3)可以通过以下方式计算: 于是乎我们找到了二维空间下数据变换的方式: 新的基向量矩阵 * 原基向量矩阵的转置 * 原数据向量 = 新的数据向量 也就是说我们想要将高维数据转换为低维数据可以通过...: 低维空间的基向量矩阵 * 高维空间的基向量矩阵的转置 * 高维数据向量 = 低维数据向量 而参考上图,我们可以知道‘高维空间的基向量矩阵的转置 * 高维数据向量’是等于高维数据向量本身的,于是乎可以得到...其中X是原始特征,newX是降维后的特征,而(0.2 0.3)就是我们P矩阵的第一列。从之前的知识可以知道,我们是将X矩阵降维到一维。
向量索引 一旦将数据存储在数组中,NumPy便会提供简单的方法将其取出: ? 上面展示了各式各样的索引,例如取出某个特定区间,从右往左索引、只取出奇数位等等。...矩阵运算 NumPy中曾经有一个专用的类matrix,但现在已弃用,因此下面将交替使用矩阵和2D数组两个词。 矩阵初始化语法与向量相似: ? 这里需要双括号,因为第二个位置参数是为dtype保留的。...在第一部分中,我们已经看到向量乘积的运算,NumPy允许向量和矩阵之间,甚至两个向量之间进行元素的混合运算: ? 行向量与列向量 从上面的示例可以看出,在二维数组中,行向量和列向量被不同地对待。...默认情况下,一维数组在二维操作中被视为行向量。因此,将矩阵乘以行向量时,可以使用(n,)或(1,n),结果将相同。 如果需要列向量,则有转置方法对其进行操作: ?...解决方法是将其转换为列向量,或者使用column_stack自动执行: ? 堆叠的逆向操作是分裂: ? 矩阵可以通过两种方式完成复制:tile类似于复制粘贴,repeat类似于分页打印。 ?
:矩阵matrix 只有一种数据源类型数据框 data.frame 每列只有一种数据类型list列表:可以装的下一切(数据,向量,矩阵,数据框)数据框 新建新建数据框data.frame()读取数据框...第几行 ,第几列] = 赋值修改后的数据修改一个列的数据文件名$列名 = c()赋值修改后的向量(先提取一个列$,再修改)增加一列的数据文件名$列名 = c()赋值修改后的向量($提取的是一个全新的列名...)矩阵 新建 (不适用$提取)m = matrix(向量,nrow = 分成多少行就写几的数字 )矩阵的行 列 写成了[]形式> m 向量...,y]矩阵的转置和转换 t()转置(将行和列互转,要先给列改名,不然转置没有区别> colnames(m) m a b...7 8 9转换为数据框 m = as.data.frame()可以用class来判断是否转换成功list列表 新建> x <- list(m1 = matrix(1:9, nrow = 3)
一、向量、矩阵和数组 作者:Chris Albon 译者:飞龙 协议:CC BY-NC-SA 4.0 转置矩阵或向量 # 加载库 import numpy as np # 创建向量 vector...[7, 8, 9]]) # 转置向量 vector.T # array([1, 2, 3, 4, 5, 6]) # 转置矩阵 matrix.T ''' array([[1, 4, 7],...的mat数据结构对于我们的目的而言不太灵活,应该避免。...将字典转换为矩阵 # 加载库 from sklearn.feature_extraction import DictVectorizer # 我们的数据字典 data_dict = [{'Red':...{'Red': 2, 'Yellow': 2}] # 创建 DictVectorizer 对象 dictvectorizer = DictVectorizer(sparse=False) # 将字典转换为特征矩阵
picture=picture(:);% 单张图片拉成列向量 将picture变量转换为列向量的形式。...covMatrix=sample*sample';% 求样本的协方差矩阵 计算样本的协方差矩阵,即将样本矩阵乘以其转置。...这里的计算过程是通过将特征向量与其转置相乘来实现。...创建空矩阵trainData和testData,用于存储训练数据和测试数据。 使用两个循环,将样本数据按列连接,并存储到trainData和testData中。...如果测试数据点的类别与正确类别不一致,则增加误差计数。 计算识别率,并将结果存储到result中。 将一维结果矩阵result转换为二维矩阵,以便后续绘制图形。
经常会遇到(),[],与{}三种符号,下面接着捋一捋其他的特殊符号使用方法,主要有 : 冒号'分号 & && 与 | || 或 ~ 非 .点 ---- 1、:冒号 冒号的主要用途是用来表示数据从开始位置取到...在matlab中,a(:, 1:3)=[]表示将数组a的第1到第3列删除。 第一个冒号( : )表示取数组a的所有行;1:3表示取数组a的第1到第3列。...---- 2:'分号 分号一般用于矩阵转置,其中A.'...是一般转置,A'是共轭转置,顾名思义是对矩阵先做共轭运算(不懂共轭的自行百度),再进行转置,在A是实数矩阵时,两者没有区别,但是当A是复矩阵时,就有区别,示例如下: A=[1 2 3;4 5 6] A...答:a(:)作用是把矩阵a转换为列向量,就是一列,a(: ).'是把矩阵a转换为一个行向量,就是一行。
)方法是将多维数据“压平”为一维数组的过程 array.reshape(2,3) # 将array数据从shape为(3,2)的形式转换为(2,3)的形式: # array([[1, 2, 3], #...与vector_b相乘,结果为20 np.dot(vector_a,vector_b.T) ''' 将一个行向量与一个列向量叉乘的结果相当于将两个行向量求点积,在这里我们测试了dot()方法。...其中array类型的T()方法表示转置。 测试结果表明: dot()方法对于两个向量默认求其点积。对于符合叉乘格式的矩阵,自动进行叉乘。...V是一个n×n的方阵,它的转置也是一个方阵,与U矩阵类似,构成这个矩阵的向量也是正交的,被称为右奇异向量。整个奇异值分解算法矩阵的形式如图4-1所示,具体算法实现在此不再赘述。 ?...,特征向量是列向量 value_indices = np.argsort(eig_values) # 将特征值从小到大排序 n_vectors = eig_vectors[:, value_indices
领取专属 10元无门槛券
手把手带您无忧上云