首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将现有数据透视表添加到数据模型

要将现有的数据透视表添加到数据模型中,您可以按照以下步骤进行操作:

  1. 打开Excel,并导航到数据透视表所在的工作表。
  2. 在Excel菜单栏中,选择"数据"选项卡,然后点击"从表格/范围"按钮。这将打开"获取和转换数据"窗口。
  3. 在"获取和转换数据"窗口中,选择"从表格/范围"选项,并确保正确选择了数据透视表的范围。
  4. 点击"加载"按钮,将数据透视表加载到Power Query编辑器中。
  5. 在Power Query编辑器中,对数据透视表进行任何必要的数据清洗和转换操作。您可以添加、删除或重命名列,更改数据类型,应用筛选器等。
  6. 在Power Query编辑器中,点击"关闭并加载"按钮,将数据透视表加载到数据模型中。
  7. Excel将会打开一个新的工作表,其中包含数据模型中的数据透视表。您可以在此工作表上进行进一步的分析和操作。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

数据透视入门

然后我们利用几几步简单的菜单操作完成数据透视的配置环境: 首先将鼠标放在原数据区域的任一单元格,选择插入——透视; 在弹出的菜单中,软件会自动识别并完成原数据区域的选区工作。 ?...你需要做的是定义好数据透视的输出位置: 新工作:软件会为透视输出位置新建一个工作现有工作:软件会将透视输出位置放在你自定义的当前工作目标单元格区域。...最下面的“数据添加到数据模型(M)”是透视的高级应用功能,目前无需涉及! 然后确定之后,透视环境就设置好了,剩下的就是随心所欲的点点鼠标就可以完成很多不可思议的复杂分析工作了。 ?...如果我们想要了解不同地区、不同产品销量,那么我们可以这样设置: 大区字段拖入行,产品字段拖入列,销售数量字段拖入值: ? 此时透视会输出行变量为地区,列表变量为产品,值为销量的结果。...当然透视的行列字段位置是可以同时容纳多列变量属性的。 本例中我们可以地区、城市调入行字段、将成色、二手货调入列字段,销售数量调入值字段。 ?

3.5K60
  • 数据透视多表合并

    今天跟大家分享有关数据透视多表合并的技巧!...在弹出的数据透视向导中选择多重合并计算数据区域,点击下一步。 选择创建自定义字段,继续点击下一步。 ? 在第三步的菜单中选定区域位置用鼠标分别选中四个数据区域(包含标题字段)。...此时软件会生成一个默认的透视样式,需要我们自己对透视结构、字段做细微调整。 ? 页字段名重命名为地区,行标签命名为类别(双击或者在左上角名称框中命名) ?...合并步骤: 与工作薄内的间合并差不多,首先插入——数据透视向导(快捷键:Alt+d,p) 选择多重合并计算字段——创建自定义字段。 ? 两个工作薄中的四张全部添加到选定区域。 ? ?...如果你觉得现有透视不符合自己的要求,也可以自己调整字段。 省份字段调入列区域。 ? 去掉列汇总项。 ? 其实那个销售金额和销售数量两个字段也是可以左右调换的。

    8.8K40

    Python数据透视透视分析:深入探索数据关系

    数据透视是一种用于进行数据分析和探索数据关系的强大工具。它能够大量的数据按照不同的维度进行聚合,并展示出数据之间的关系,帮助我们更好地理解数据背后的模式和趋势。...在Python中,有多个库可以用来创建和操作数据透视,其中最常用的是pandas库。 下面我介绍如何使用Python中的pandas库来实现数据透视透视分析。...df = pd.read_csv('data.csv') # 根据实际情况修改文件路径和格式 3、创建数据透视:使用pandas的pivot_table()函数可以轻松创建数据透视。...:通过创建数据透视,我们可以深入探索不同维度之间的数据关系,并对数据进行分析。...column_means = pivot_table.mean(axis=0) table_total = pivot_table.sum().sum() 可视化:可以使用matplotlib或其他可视化库数据透视中的数据进行可视化

    20510

    技术|数据透视,Python也可以

    对于习惯于用Excel进行数据分析的我们来说,数据透视的使用绝对是排名仅次于公式使用的第二大利器。特别是在数据预处理的时候,来一波透视简直是初级得不能再初级的操作了。...接下来就给大家讲一下如何在Python中实现数据透视的功能。 ? pivot ? pd.pivot_table 这就是实现数据透视表功能的核心函数。显而易见,这个函数也是基于Pandas的。...在使用这个功能之前,需要先import pandas as pd哦~ pivot这个单词本身就已经告诉我们这个函数实现的功能类似于数据透视数据透视:data pivot) 需要指定的参数也和Excel...我们先回顾一下使用Excel进行数据透视的操作过程: 首先,选中希望进行数据透视数据,点击数据透视,指定数据透视的位置。 ? ?...敲黑板,重点来了: index=列 colums=行 values=值 有了这三个函数,最最最基础的一个数据透视就算是完成了。

    2K20

    数据透视多表合并|字段合并

    今天要跟大家分享的内容是数据透视多表合并——字段合并!...因为之前一直都没有琢磨出来怎么使用数据透视做横向合并(字段合并),总觉得关于合并绍的不够完整,最近终于弄懂了数据透视表字段合并的思路,赶紧分享给大家!...数据仍然是之前在MS Query字段合并使用过的数据; 四个,都有一列相同的学号字段,其他字段各不相同。 建立一个新工作作为合并汇总表,然后在新中插入数据透视。...你会发现软件自动三个的字段都合并到一个汇总表中,行标签是主字段(学号),列字段是其他非唯一字段(地理、历史、数学、英语、政治、语文、政治、综合、总分)。 ?...此时已经完成了数据之间的多表字段合并! ? 相关阅读: 数据透视多表合并 多表合并——MS Query合并报表

    7.6K80

    在pandas中使用数据透视

    什么是透视? 经常做报表的小伙伴对数据透视应该不陌生,在excel中利用透视可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视是一种汇总了更广泛数据的统计信息。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视可以快速抽取有用的信息: ? pandas也有透视?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视的功能。 在pandas中,透视操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据,解决大麻烦。...参数aggfunc对应excel透视中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据如下: ?...首先导入数据: data = pd.read_excel("E:\\订单数据.xlsx") data.head() 接下来使用透视做分析: 计算每个州销售总额和利润总额 result1 = pd.pivot_table

    2.8K40

    在pandas中使用数据透视

    Python大数据分析 记录 分享 成长 什么是透视?...经常做报表的小伙伴对数据透视应该不陌生,在excel中利用透视可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视是一种汇总了更广泛数据的统计信息。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视可以快速抽取有用的信息: pandas也有透视?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视的功能。 在pandas中,透视操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据,解决大麻烦。...下面拿数据练一练,示例数据如下: 该为用户订单数据,有订单日期、商品类别、价格、利润等维度。

    3K20

    数据科学小技巧3:数据透视

    数据透视是Excel里面常用的分析方法和工具,通过行选择,指定需要分组指标;通过列选择,指定需要计算指标,最后在指定需要聚合计算类型,比方说是计数,还是求均值,还是累加和等等。...第三个数据科学小技巧:数据透视。前面的数据科学小技巧,可以点击下面链接进入。...数据科学小技巧系列 1数据科学小技巧1:pandas库apply函数 2数据科学小技巧2:数据画像分析 我们用Python语言和pandas库轻松实现数据透视表功能。...第二步:导入数据集 ? 第三步:数据检视 ? 第四步:数据透视 ?...我们使用pandas库的pivot_table函数,重要参数设置: index参数:指定分组指标 values参数:指定计算的指标 aggfunc参数:指定聚合计算的方式,比方说求平均,累加和 数据透视结果

    1.1K30

    对比Excel,学习pandas数据透视

    Excel中做数据透视 ① 选中整个数据源; ② 依次点击“插入”—“数据透视” ③ 选择在Excel中的哪个位置,插入数据透视 ④ 然后根据实际需求,从不同维度展示结果 ⑤ 结果如下 pandas...用pivot_table()做数据透视 1)语法格式 pd.pivot_table(data,index=None,columns=None, values=None,aggfunc...margins_name='All', dropna=True,fill_value=None) 2)对比excel,说明上述参数的具体含义 参数说明: data 相当于Excel中的"选中数据源..."; index 相当于上述"数据透视表字段"中的行; columns 相当于上述"数据透视表字段"中的列; values 相当于上述"数据透视表字段"中的值; aggfunc 相当于上述"结果"中的计算类型...dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除; fill_value 表示缺失值,用某个指定值填充。

    1.7K10

    对比Excel,学习pandas数据透视

    Excel中做数据透视 ① 选中整个数据源; ② 依次点击“插入”—“数据透视” ③ 选择在Excel中的哪个位置,插入数据透视 ④ 然后根据实际需求,从不同维度展示结果 ⑤ 结果如下 pandas...用pivot_table()做数据透视 1)语法格式 pd.pivot_table(data,index=None,columns=None, values=None,aggfunc...margins_name='All', dropna=True,fill_value=None) 2)对比excel,说明上述参数的具体含义 参数说明: data 相当于Excel中的"选中数据源..."; index 相当于上述"数据透视表字段"中的行; columns 相当于上述"数据透视表字段"中的列; values 相当于上述"数据透视表字段"中的值; aggfunc 相当于上述"结果"中的计算类型...dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除; fill_value 表示缺失值,用某个指定值填充。

    1.6K20
    领券