首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SQL Server 动态行转列(参数化表名、分组列、行转列字段、字段值)

    ; 方法三:使用PIVOT关系运算符,静态列字段; 方法四:使用PIVOT关系运算符,动态列字段; 扩展阅读一:参数化表名、分组列、行转列字段、字段值; 扩展阅读二:在前面的基础上加入条件过滤; 参考文献...、分组字段、行转列字段、值这四个行转列固定需要的值变成真正意义的参数化,大家只需要根据自己的环境,设置参数值,马上就能看到效果了(可以直接跳转至:“参数化动态PIVOT行转列”查看具体的脚本代码)。...行转列字段、字段值这几个参数,逻辑如图5所示, 1 --5:参数化动态PIVOT行转列 2 -- ============================================= 3 -...SYSNAME --行变列值的字段 14 SET @tableName = 'TestRows2Columns' 15 SET @groupColumn = 'UserName' 16 SET @row2column...SYSNAME --行变列值的字段 15 SET @tableName = 'TestRows2Columns' 16 SET @groupColumn = 'UserName' 17 SET @row2column

    5.6K30

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。...图9 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三列的新数据框架。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    30.2K60

    还分不清左值,右值,将亡值?看这里!

    ”、“将亡值”的概念。...其中,左值和将亡值合称泛左值(generalized lvalue,glvalue),纯右值和将亡值合称右值(right value,rvalue)。见下图 ?...C++11中的将亡值是随着右值引用④的引入而新引入的。换言之,“将亡值”概念的产生,是由右值引用的产生而引起的,将亡值与右值引用息息相关。...所谓的将亡值表达式,就是下列表达式: 返回右值引用的函数的调用表达式 转换为右值引用的转换函数的调用表达式 读者会问:这与“将亡”有什么关系?...②确切说,是表达式的结果的值类别,但我们一般不刻意区分表达式和表达式的求值结果,所以这里称“表达式的值类别”。 ③当我们将函数名作为一个值来使用时,该函数名自动转换为指向对应函数的指针。

    6.6K30

    Pandas 查找,丢弃列值唯一的列

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

    10.1K21

    使用metpy将台风数据插值转换为极坐标系

    www.heywhale.com/mw/project/631aa26a8e6d2ee0a86a162b 研究台风的同学们应该都接触过需要计算以台风为中心的方位角平均物理量,这就需要将笛卡尔坐标系中的数据插值到极坐标系...本项目就是利用metpy里calc这个计算模块,以ERA5数据为例,给定一个台风中心,选取层次为500 hPa,进行插值计算,将数据从笛卡尔坐标系插值为极坐标系,并对两个结果进行对比分析。...导入相关库 from scipy import interpolate #用来插值 import metpy.calc as mpcalc #常用气象物理量计算的库 from metpy.units...,插值效果还是十分不错的。...插值后的数据是方位角和半径的函数,后续就可以利用插值后的数据在不同方位角上进行数据分析了。

    3K30
    领券