是什么和数据分析(案例讲解) 1、DataFrame是什么 SparkSQL模块前世今生、官方定义和特性 DataFrame是什么 DataFrame = RDD[Row] + Schema...当RDD中数据类型CaseClass样例类时,通过反射Reflecttion获取属性名称和类型,构建Schema,应用到RDD数据集,将其转换为DataFrame。...范例演示:将数据类型为元组的RDD或Seq直接转换为DataFrame。...原因:在SparkSQL中当Job中产生Shuffle时,默认的分区数(spark.sql.shuffle.partitions )为200,在实际项目中要合理的设置。...无论是DSL编程还是SQL编程,性能一模一样,底层转换为RDD操作时,都是一样的:Catalyst 17-[掌握]-电影评分数据分析之保存结果至MySQL 将分析数据保持到MySQL表中,直接调用
x发布时,将Dataset和DataFrame统一为一套API,以Dataset数据结构为主(Dataset= RDD + Schema),其中DataFrame = Dataset[Row]。...当RDD中数据类型CaseClass样例类时,通过反射Reflecttion获取属性名称和类型,构建Schema,应用到RDD数据集,将其转换为DataFrame。...范例演示:将数据类型为元组的RDD或Seq直接转换为DataFrame。...原因:在SparkSQL中当Job中产生Shuffle时,默认的分区数(spark.sql.shuffle.partitions )为200,在实际项目中要合理的设置。...无论是DSL编程还是SQL编程,性能一模一样,底层转换为RDD操作时,都是一样的:Catalyst 17-[掌握]-电影评分数据分析之保存结果至MySQL 将分析数据保持到MySQL表中,直接调用
即如果某个结点上的RDD partition因为节点故障,导致数据丢失,那么RDD可以通过⾃⼰的数据来源重新计算该partition。...其中,RDD可以通过SparkSession的createDataFrame方法转换为DataFrame;DataFrame和DataSet之间可以通过as方法进行转换,而DataFrame和RDD之间可以通过...② 从 Kafka 中读取数据,并将每个分区的数据转换为 RDD 或 DataFrame。 ③ 在处理数据时,将每个分区的消费偏移量保存下来,并在处理完每个批次后,手动提交这些偏移量。 ...由于做 cogroup 的操作,需要通过 partitioner 进行重新分区的操作,因此,执行这个流程时,需要执行一次 shuffle 的操作(如果要进行合并的两个 RDD的都已经是 shuffle...39.1 map 类型的算子执行中内存溢出如 flatMap,mapPatitions 原因:map 端过程产生大量对象导致内存溢出,这种溢出的原因是在单个map 中产生了大量的对象导致的。
可以把它当做数据库中的一张表来对待,DataFrame也是懒执行的。性能上比 RDD 要高,主要原因:优化的执行计划:查询计划通过 Spark catalyst optimiser 进行优化。...Dataframe 是 Dataset 的特列,DataFrame=Dataset[Row] ,所以可以通过 as 方法将 Dataframe 转换为 Dataset。...RDD转DataFrame、Dataset RDD转DataFrame:一般用元组把一行的数据写在一起,然后在toDF中指定字段名。 RDD转Dataset:需要提前定义字段名和类型。 2....DataFrame转RDD、Dataset DataFrame转RDD:直接转 val rdd = testDF.rdd DataFrame转Dataset:需要提前定义case class,然后使用as...Dataset转RDD、DataFrame DataSet转RDD:直接转 val rdd = testDS.rdd DataSet转DataFrame:直接转即可,spark会把case class封装成
因此一个常见的数据处理步骤就是将JSON转换为ORC、Parquet等高效的列式存储格式。...于是,在处理这张表时,分区剪枝等分区特有的优化也可以得以实施。 提升执行效率 利用DataFrame API,不仅代码可以更加精简,更重要的是,执行效率也可以得到提升。...另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。...上文讨论分区表时提到的分区剪枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
9、spark中的RDD是什么,有哪些特性?...数据不平衡导致内存溢出: 数据不平衡除了有可能导致内存溢出外,也有可能导致性能的问题,解决方法和上面说的类似,就是调用repartition重新分区。...RDD 弹性分布式数据集;不可变、可分区、元素可以并行计算的集合。 优点: RDD编译时类型安全:编译时能检查出类型错误; 面向对象的编程风格:直接通过类名点的方式操作数据。...缺点: 序列化和反序列化的性能开销很大,大量的网络传输; 构建对象占用了大量的heap堆内存,导致频繁的GC(程序进行GC时,所有任务都是暂停) DataFrame DataFrame以...DataFrame可以从很多数据源构建; DataFrame把内部元素看成Row对象,表示一行行的数据 DataFrame=RDD+schema 缺点: 编译时类型不安全; 不具有面向对象编程的风格。
RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。 RDD和DataFrame 上图直观地体现了DataFrame和RDD的区别。...而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。...另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。...上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。...当一个 RDD 的分区依赖于另一个 RDD 的分区时,这两个 RDD 就属于同一个阶段。当一个 RDD 的分区依赖于多个 RDD 的分区时,这些 RDD 就属于不同的阶段。...窄依赖的多个分区可以并行计算,并且窄依赖的一个分区的数据如果丢失只需要重新计算对应的分区的数据就可以了。 宽依赖 指子RDD的分区依赖于父RDD的所有分区,称之为「宽依赖」。...血缘关系可以帮助 Spark 在发生故障时恢复数据。当一个分区丢失时,Spark 可以根据血缘关系重新计算丢失的分区,而不需要从头开始重新计算整个 RDD。...DataFrame/Dataset 转 RDD val rdd1=testDF.rdd val rdd2=testDS.rdd RDD 转 DataSet import spark.implicits
在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。...当一个 RDD 的分区依赖于另一个 RDD 的分区时,这两个 RDD 就属于同一个阶段。当一个 RDD 的分区依赖于多个 RDD 的分区时,这些 RDD 就属于不同的阶段。...图片窄依赖的多个分区可以并行计算,并且窄依赖的一个分区的数据如果丢失只需要重新计算对应的分区的数据就可以了。宽依赖指子RDD的分区依赖于父RDD的所有分区,称之为「宽依赖」。...血缘关系可以帮助 Spark 在发生故障时恢复数据。当一个分区丢失时,Spark 可以根据血缘关系重新计算丢失的分区,而不需要从头开始重新计算整个 RDD。...DataFrame/Dataset 转 RDDval rdd1=testDF.rddval rdd2=testDS.rddRDD 转 DataSetimport spark.implicits.
11、RDD的优势是什么?...相应的,那么宽依赖就是指父RDD的分区被多个子RDD的分区所依赖。例如,map就是一种窄依赖,而join则会导致宽依赖,主要是看有没有shuffle操作。 宽窄依赖的作用是用来划分stage。...rdd出错后可以根据血统信息进行还原,如果没有对父rdd进行持久化操作就需要从源头重新计算;还有一种场景是某个rdd被重复使用,而这个rdd的生成的代价也不小,为了提高计算效率可以将这个rdd进行持久化操作...1.driver端的内存溢出 可以增大driver的内存参数:spark.driver.memory (default 1g); 2.map过程产生大量对象导致内存溢出 这种溢出的原因是在单个map中产生了大量的对象导致的...3.数据不平衡导致内存溢出 数据不平衡除了有可能导致内存溢出外,也有可能导致性能的问题,解决方法和上面说的类似,就是调用repartition重新分区。
Spark基础知识 1.Spark是什么?...DataFrame相关知识点 1.DataFrame是什么? DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。 2.DataFrame与RDD的主要区别在于?...,Action返回值不少一个RDD,而是一个Scala的集合;所有的Transformation都是采用的懒策略,如果只是将Transformation提交是不会执行计算的,计算只有在Action被提交时才会被触发...窄依赖是指父RDD的每个分区都只被子RDD的一个分区所使用。相应的,那么宽依赖就是指父RDD的分区被多个子RDD的分区所依赖。...例如,map就是一种窄依赖,而join则会导致宽依赖 依赖关系分类的特性: 第一,窄依赖可以在某个计算节点上直接通过计算父RDD的某块数据计算得到子RDD对应的某块数据; 第二,数据丢失时,对于窄依赖只需要重新计算丢失的那一块数据来恢复
因此,当需要对RDD中的元素执行操作时,可以使用foreach;当需要对整个分区执行操作时,可以使用foreachPartition。...宽依赖(Wide Dependency): 宽依赖表示子RDD的分区依赖于父RDD的多个分区。 当一个算子需要将父RDD的多个分区数据合并到一个子RDD的分区时,就会产生宽依赖。...宽依赖会导致数据的洗牌(Shuffle),即数据在网络中进行大量的数据传输和重新分区,对性能产生负面影响。 例如,groupByKey、reduceByKey等需要进行全局聚合的操作会产生宽依赖。...宽依赖需要进行数据洗牌,但Spark可以通过重新执行丢失的分区来实现容错,提高了容错能力。 总结: Spark的宽依赖和窄依赖是描述RDD之间依赖关系的概念。...如何使用Spark实现topN的获取(描述思路或使用伪代码) 方法1: (1)按照key对数据进行聚合(groupByKey) (2)将value转换为数组,利用scala的sortBy或者sortWith
简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。 ...5)DataFrame 是 DataSet 的特列,type DataFrame = Dataset[Row] ,所以可以通过 as 方法将 DataFrame 转换为 DataSet。...和 RDD 互操作 Spark SQL 支持通过两种方式将存在的 RDD 转换为 DataSet,转换的过程中需要让 DataSet 获取 RDD 中的 Schema 信息。...小结: DataFrame/Dataset 转 RDD: val rdd1 = testDF.rdd val rdd2 = testDS.rdd RDD 转 DataFrame: import...在分区的表内,数据通过分区列将数据存储在不同的目录下。Parquet 数据源现在能够自动发现并解析分区信息。
0.2 Spark Core 0.2.1 Spark RDD 持久化 Spark 非常重要的一个功能特性就是可以将 RDD 持久化在内存中,当对 RDD 执行持久化操作时,每个节点都会将自己操作的...又需要重新读取 HDFS 文件数据,再次形成新的 linesRDD,这会导致反复消耗大量时间,会严重降低系统性能。 ...DataFrame 是 DataSet 的特例,DataFrame = DataSet[Row],所以可以通过 as 方法将 DataFrame 转换为 DataSet。...、DataFrame 与 DataSet 之间的转换 1、DataFrame/DataSet 转 RDD val rdd1=testDF.rdd val rdd2=testDS.rdd 2、RDD 转...4、DataFrame 转 DataSet import spark.implicits._ val testDF = testDS.toDF 5、DataSet 转 DataFrame import
2) RDD 是什么?...在部分分区数据丢失时,Spark 可以通过这个依赖关系重新计算丢失的分区数据,而不是对 RDD 的所有分区进行重新计算。...持久化级别 说明 MORY_ONLY(默认) 将 RDD 以非序列化的 Java 对象存储在 JVM 中。如果没有足够的内存存储 RDD,则某些分区将不会被缓存,每次需要时都会重新计算。...如果因为网络异常等原因导致失败会自动进行重试。...原因:对于特别复杂的Spark应用,会出现某个反复使用的RDD,即使之前持久化过但由于节点的故障导致数据丢失了,没有容错机制,所以需要重新计算一次数据。
程序产生小文件的原因 程序运行的结果最终落地有很多的小文件,产生的原因: 读取的数据源就是大量的小文件 动态分区插入数据,会产生大量的小文件,从而导致map数量剧增 Reduce...2、repartition/coalesce 对于已有的可以使用动态分区重刷数据,或者使用Spark程序重新读取小文件的table得到DataFrame,然后再重新写入,如果Spark的版本>=2.4那么推荐使用...额外补充两者的区别 coalesce,一般有使用到Spark进行完业务处理后,为了避免小文件问题,对RDD/DataFrame进行分区的缩减,避免写入HDFS有大量的小文件问题,从而给HDFS的NameNode...,这样很容易就导致程序OOM异常 如果 coalesce 前的分区数小于 后预想得到的分区数,coalesce就不会起作用,也不会进行shuffle,因为父RDD和子RDD是窄依赖 repartition...,常用的情况是:上游数据分区数据分布不均匀,才会对RDD/DataFrame等数据集进行重分区,将数据重新分配均匀, 假设原来有N个分区,现在repartition(M)的参数传为M, 而 N < M
由于做 cogroup 的操作,需要通过 partitioner 进行重新分区的操作,因此,执行这个流程时,需要执行一次 shuffle 的操作(如果要进行合并的两个 RDD 的都已经是 shuffle...对于窄依赖: 窄依赖的多个分区可以并行计算; 窄依赖的一个分区的数据如果丢失只需要重新计算对应的分区的数据就可以了。...map 类型的算子执行中内存溢出如 flatMap,mapPatitions 原因:map 端过程产生大量对象导致内存溢出:这种溢出的原因是在单个 map 中产生了大量的对象导致的针对这种问题。...方式二:利用 Spark SQL 将获取的数据 RDD 转换成 DataFrame,再将 DataFrame 写成缓存表,最后利用 Spark SQL 直接插入 hive 表中。...原因:对于特别复杂的 Spark 应用,会出现某个反复使用的 RDD,即使之前持久化过但由于节点的故障导致数据丢失了,没有容错机制,所以需要重新计算一次数据。
Spark应用程序通常是由多个RDD转换操作和Action操作组成的DAG图形。在创建并操作RDD时,Spark会将其转换为一系列可重复计算的操作,最后生成DAG图形。...例如,Spark中对RDD进行的count、collect、reduce、foreach等操作都属于Action操作,这些操作可以返回具体的结果或将RDD转换为其他格式(如序列、文件等)。...DataFrame创建DataFrame:可以使用SparkContext上的createDataFrames方法将一个已知的RDD映射为一个DataFrame。...分区数:适当设置分区数有助于提高性能,并避免将大数据集拆分为过多的小分区而产生管理上的负担。...特征选择:在选择特征时需要尽量选择和目标相关性高、且不同特征之间相互独立的特征,避免特征冗余导致模型过于复杂。
Datasets),是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。...第二,窄依赖能够更有效地进行失效节点的恢复,即只需重新计算丢失RDD分区的父分区,而且不同节点之间可以并行计算;而对于一个宽依赖关系的Lineage图,单个节点失效可能导致这个RDD的所有祖先丢失部分分区...,因而需要整体重新计算。...5、 DataSet 结构化的RDD 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。
②.不变性 PySpark 在 HDFS、S3 等上的容错数据存储上运行,因此任何 RDD 操作失败,它会自动从其他分区重新加载数据。...④.分区 当从数据创建 RDD 时,它默认对 RDD 中的元素进行分区。默认情况下,它会根据可用内核数进行分区。...10 partitions 5、RDD并行化 参考文献 启动 RDD 时,它会根据资源的可用性自动将数据拆分为分区。...RDD进行**重新分区**, PySpark 提供了两种重新分区的方式; 第一:使用repartition(numPartitions)从所有节点混洗数据的方法,也称为完全混洗, repartition...可能导致shuffle的操作包括: repartition和coalesce等重新分区操作, groupByKey和reduceByKey等聚合操作(计数除外), 以及cogroup和join等连接操作
领取专属 10元无门槛券
手把手带您无忧上云