首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何将 Java 8 中的流转换为数组

    问题 Java 8 中,什么是将流转换为数组的最简单的方式?...String[] stringArray = stringStream.toArray(size -> new String[size]); 其中 IntFunction generator 的目的是将数组长度放到到一个新的数组中去...我们县创建一个带有 Stream.of 方法的 Stream,并将其用 mapToInt 将 Stream 转换为 IntStream,接着再调用 IntStream 的 toArray...; 紧接着也是一样,只需要使用 IntStream 即可; int[]array2 = IntStream.rangeClosed(1, 10).toArray(); 回答 3 利用如下代码即可轻松将一个流转换为一个数组...然后我们在这个流上就可以进行一系列操作了: Stream myNewStream = stringStream.map(s -> s.toUpperCase()); 最后,我们使用就可以使用如下方法将其转换为数组

    3.9K10

    在 PySpark 中,如何将 Python 的列表转换为 RDD?

    在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...()# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印...RDD 的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。

    6610

    独家 | 是时候和pd.read_csv(), pd.to_csv()说再见了

    因此,在这篇文章中,我们将探索Dask和DataTable,这两个最受数据科学家欢迎的类 Pandas 库。...读取 CSV 并获取 PANDAS DATAFRAME 所需的时间 如果我们通过 Dask 和 DataTable 读取 CSV,它们将分别生成 Dask DataFrame 和 DataTable DataFrame...但是,要从 Dask 和 DataTable 创建 CSV,我们首先需要将给定的 Pandas DataFrame 转换为它们各自的 DataFrame,然后将它们存储在 CSV 中。...我将下面描述的每个实验重复了五次,以减少随机性并从观察到的结果中得出较公平的结论。我在下一节中报告的数据是五个实验的平均值。 3....在这两种情况下,Datatable 生成Pandas 中的 DataFrame 所需的时间最少,提供高达 4 到 5 倍的加速——使其成为迄今为止最好的选择。

    1.5K30

    是时候和pd.read_csv(), pd.to_csv()说再见了

    因此,在这篇文章中,我们将探索Dask和DataTable,这两个最受数据科学家欢迎的类 Pandas 库。...读取 CSV 并获取 PANDAS DATAFRAME 所需的时间 如果我们通过 Dask 和 DataTable 读取 CSV,它们将分别生成 Dask DataFrame 和 DataTable DataFrame...但是,要从 Dask 和 DataTable 创建 CSV,我们首先需要将给定的 Pandas DataFrame 转换为它们各自的 DataFrame,然后将它们存储在 CSV 中。...我将下面描述的每个实验重复了五次,以减少随机性并从观察到的结果中得出较公平的结论。我在下一节中报告的数据是五个实验的平均值。 3....在这两种情况下,Datatable 生成Pandas 中的 DataFrame 所需的时间最少,提供高达 4 到 5 倍的加速——使其成为迄今为止最好的选择。

    1.1K20

    java jsonobject转List_java – 将JSONObject转换为List或JSONArray的简单代码?「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。 我已经通过各种线程阅读并发现了类似的问题,但在找到解决我的特定问题的方法方面却相当不成功....[{“locationId”:2,”quantity”:1,”productId”:1008}]}orr’s type = class org.json.simple.JSONObject 我正在尝试将这些数据放入数组.../列表/任何可以使用密钥的地方,470,471来检索数据....orderOneKey = (JSONObject)orderOne.get(0); System.out.println(orderOneKey.get(“productId”)); 这就是我所追求的,...编辑: 显然我无法回答8个小时的问题: 感谢朋友的帮助和一些摆弄,我发现了一个解决方案,我确信它不是最有说服力的,但它正是我所追求的: for(Object key: orr.keySet()) { JSONArray

    8.9K20

    Golang中Int32转换为int16丢失精度的具体过程

    大家好,又见面了,我是你们的朋友全栈君 Int32转换为int16会丢失精度,这是总所周知的,但是具体如何丢失精度的,请看下面的代码: var tmp1 int32 = 123424021 var tmp2...: 2.原理分析 首先,我们分别把123424021和123456789转换为二进制形式: 123424021的二进制形式111010110110100110100010101 123456789的二进制形式...当从int32转换为int16时,Golang会截取后面的16位数字,两个数字的截取情况如下: 123424021截取0100110100010101 123456789截取1100110100010101...但是在无符号的二进制数中,我们可以把1100110100010101看作一个正数来处理,此时1100110100010101转换为十进制就是52501。...3.二进制正负数的转换运算 二进制的负数采用补码的方式来实现,运算规则是将正数取反后再加1,例子: 假如我们要表示-100,首先,100的二进制形式是01100100,我们对其近期取反操作10011011‬

    2.4K50

    Datatable:Python数据分析提速高手,飞一般的感觉!

    中,所有这些操作的主要工具是方括号表示法,其灵感来自传统的矩阵索引。...将结果Dataframe命名为df。我们将使用它作为我们的目标变量。并将这一列重命名为Will_Default,以避免混淆。...例如,如果借款人已经偿还了贷款,则会提到偿还贷款的日期。但是,如果还没有偿还贷款,则字段为空,将空白值替换为0。字段的值为1,这意味着借款人没有违约。他已经在某一天还清了贷款。...大家还可以将其转换为pandas dataframe、CSV文件或二进制文件: df.to_pandas() df.to_csv("out.csv") df.to_jay("data.jay") 3 总结...如今,在数据科学生态系统中存在大量类似数据库的工具。

    2.3K51

    Word VBA技术:将文档中的超链接转换为普通文本(取消超链接)

    具体设置方法如下: 单击“文件——选项”,在出现的“Word选项”窗口中选择左侧的“校对”选项卡,在右侧单击“自动更正选项按钮”,在出现的“自动更正”窗口中选择“键入时自动套用格式”,取消勾选其中的“Internet...及网络路径替换为超链接”前的复选框。...图1 然而,对于文档中已经存在的超链接,则还需要逐个取消。...此时,如果想要将文档中所有已有的超链接转换为普通文本,即取消其超链接,可以使用下面的代码: Sub RemoveHyperlinks() Dim objHyperlink As Hyperlink...Range .Delete rngRange.Style = wdStyleHyperlink End With Next i End Sub 此外,上述代码存在一个问题:如果文档中存在目录

    3K20

    macOS下利用dSYM文件将crash文件中的内存地址转换为可读符号

    一、使用流程     Windows下的程序运行崩溃时,往往可以利用pdb文件快速解析出程序崩溃的具体位置,甚至可以对应到源代码的具体行数。...macOS下的symbolicatecrash也具备相应的功能。对应于Windows下的pdb文件,macOS下的crash文件解析需要用到dSYM文件。...当程序崩溃时,通过symbolicatecrash对crash文件和dSYM文件中的符号进行映射,即可将crash文件中的内存地址转换为可读的字符串。以前的博文中也进行过总结,但是并没有具体实践。...而是解析我们感兴趣的内存地址的符号。其方法是:先找到Image的load address,如下: ?    ...这里我的程序在内存中的加载位置为0x10c680000(尖括号中的字符串是程序的UUID)。再次找到我们感兴趣的内存地址,如下: ?      再次运行命令: ?

    2.6K100

    共轭计算变分推理:将非共轭模型中的变分推理转换为共轭模型中的推理 1703

    这种模型被广泛应用于机器学习和统计学中,然而对它们进行变分推理在计算上仍然具有挑战性。 难点在于模型的非共轭部分。...在传统的贝叶斯设置中,当先验分布与似然性共轭时,后验分布是封闭形式的,并且可以通过简单的计算获得。例如,在共轭指数族中,后验分布的计算可以通过简单地把充分的似然统计量加到先验的自然参数上来实现。...在本文中,我们将这种计算称为共轭计算(下一节将给出一个例子)。 这些类型的共轭计算已广泛用于变分推理,主要是由于它们的计算效率。...与这些方法相比,我们的方法有一个天然的优势——我们方法中的梯度步骤可以通过使用共轭计算来实现。 我们在两类非共轭模型上演示了我们的方法。第一类包含可以分成共轭部分和非共轭部分的模型。...对于这样的模型,我们的梯度步骤可以表示为共轭模型中的贝叶斯推断。第二类模型还允许条件共轭项。

    22110

    Python Datatable:性能碾压pandas的高效多线程数据处理库

    看看Datatable如何将pandas摁在地上摩擦。 加载数据 使用的数据集来自Kaggle,属于Lending Club贷款数据数据集 。...数据大小非常适合演示数据库库的功能。 使用Datatable 让我们将数据加载到Frame对象中。 数据表中的基本分析单位是Frame 。...它与pandas DataFrame或SQL表的概念相同:数据以行和列的二维数组排列。...秒,通过Datatable读取文件然后将其转换为pandas数据格式比直接使用pandas读取数据花费的时间更少。...因此,通过datatable加载大型数据文件然后将其转换为pandas数据格式更加高效。 数据排序 通过数据中某一列值对数据集进行排序来比较Datatable和Pandas的效率。

    5.9K20
    领券