首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何将Pandas数据转换为Excel文件

将数据导出到Excel文件通常是任何用户阅读和解释一组数据的最优先和最方便的方式。...将Pandas DataFrame转换为Excel的步骤 按照下面的步骤来学习如何将Pandas数据框架写入Excel文件。...第一步:安装pandas和openpyxl 由于你需要导出pandas数据框架,显然你必须已经安装了pandas包。如果没有,请运行下面的pip命令,在你的电脑上安装Pandas python包。...(在我们的例子中,我们将输出的excel文件命名为 "转换为excel.xlsx") # creating excel writer object writer = pd.ExcelWriter('converted-to-excel.xlsx...提示 你不仅仅局限于控制excel文件的名称,而是将python数据框架导出到Excel文件中,而且在pandas包中还有很多可供定制的功能。

7.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas清洗数据的4个实用小技巧

    pandas 是做数据分析时的必备库。在数据分析之前,我们往往需要对数据的大小、内容、格式做一定处理,去掉无效值和缺失值,保持结构统一,使其便于之后的分析。这一过程被称作“数据清洗”。...今天我们就来分享几个Pandas在做数据清洗时的小技巧,内容不长,但很实用。 1...."] = df["sales"].replace("[$,RMB]", "", regex = True).astype("float") 使用正则替换,将要替换的字符放到列表中 [$,RMB],替换为空字符...8.0 9 56789 orange 7.5 10 101112 orange 6.4 11 131415 orange 3.9 以上就是长 DataFrame,对应的原 DataFrame 是宽...转 datetime 告诉 year(年份)和 dayofyear(一年中的第几天),怎么转 datetime?

    1.3K10

    Pandas 数据分析 5 个实用小技巧

    我攥了很久才汇总出这个小技巧系列手册,现暂命名为:《Pandas数据分析小技巧系列手册1.0》 我会一篇5个小技巧陆续推送出来,如果可以欢迎星标我的公众号:Python与算法社区 小技巧1:如何使用map...小技巧2:使用 replace 和正则清洗数据 Pandas 的强项在于数据分析,自然就少不了数据清洗。 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。..."", regex = True) \ .astype("float") 使用正则替换,将要替换的字符放到列表中 [$,RMB],替换为空字符...小技巧4:已知 year 和 dayofyear,怎么转 datetime?...int_number date 0201935020193502019-12-16 1201936520193652019-12-31 22020120200012020-01-01 小技巧5:如何将分类中出现次数较少的值归为

    2.3K20

    Pandas 数据分析 5 个实用小技巧

    Python与算法社区 第443篇原创,干货满满 值得星标 你好,我是 zhenguo 我攥了很久才汇总出这个小技巧系列手册,现暂命名为:《Pandas数据分析小技巧系列手册1.0》 我会一篇5个小技巧陆续推送出来...小技巧2:使用 replace 和正则清洗数据 Pandas 的强项在于数据分析,自然就少不了数据清洗。 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。..."", regex = True) \ .astype("float") 使用正则替换,将要替换的字符放到列表中 [$,RMB],替换为空字符...小技巧4:已知 year 和 dayofyear,怎么转 datetime?...int_number date 0201935020193502019-12-16 1201936520193652019-12-31 22020120200012020-01-01 小技巧5:如何将分类中出现次数较少的值归为

    1.8K20

    Python常用小技巧总结

    Pandas数据分析常用小技巧 ---- 数据分析中pandas的小技巧,快速进行数据预处理,欢迎点赞收藏,持续更新,作者:北山啦 ---- ---- 文章目录 Pandas数据分析常用小技巧 Pandas...小技巧 pandas生成数据 导入数据 导出数据 查看数据 数据选择 数据处理 数据分组 数据合并 数据替换--map映射 数据清洗--replace和正则 数据透视表分析--melt函数 将分类中出现次数较少的值归为...df1.to_excel(writer,sheet_name='单位')和writer.save(),将多个数据帧写⼊同⼀个⼯作簿的多个sheet(⼯作表) 查看数据 df.head(n) # 查看DataFrame...–melt函数 melt是逆转操作函数,可以将列名转换为列数据(columns name → column values),重构DataFrame,用法如下: 参数说明: pandas.melt(frame...8.0 9 56789 orange 7.5 10 101112 orange 6.4 11 131415 orange 3.9 将分类中出现次数较少的值归为others d = {"name":

    9.4K20

    增强分析可读性-Pandas教程

    As-is 下面让我们看一下我为这个示例生成的数据帧。这是公司需要的收入额。如你所见,这是pandas数据帧返回的默认结果。没有任何配置。 ? 我经常从我的主管或首席执行官那里得到的一个评论是。...下面是一个函数,用于将数据框中的数字转换为所需的格式。...def human_readable_format(value, pos=None): ''' 将数据帧中的数字转换为可读格式 `pos` 参数与matplotlib ticker...此函数的缺点是将数字转换为字符串,这意味着你将失去数据帧的排序能力。这个问题可以通过先排序所需的值,然后再应用它们来解决。 你可以将结果保存到excel或CSV文件,并将其放入PowerPoint中。...如果你使用pandas库进行数据分析,我认为matplotlib将是你绘制图形的首选。 ?

    97740

    读完本文,轻松玩转数据处理利器Pandas 1.0

    作者:Tom Waterman 编译:李诗萌、魔王 本文转自:机器之心 2020 年 1 月 9 日 Pandas 1.0.0rc 版本面世,Facebook 数据科学家 Tom Waterman 撰文概述了其新功能...最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...不过,Pandas 推荐用户合理使用这些数据类型,在未来的版本中也将改善特定类型运算的性能,比如正则表达式匹配(Regex Match)。...默认情况下,Pandas 不会自动将你的数据强制转换为这些类型。但你可以修改参数来使用新的数据类型。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    3.5K10

    使用Python和Selenium自动化爬取 #【端午特别征文】 探索技术极致,未来因你出“粽” # 的投稿文章

    介绍: 本文章将介绍如何使用Python的Selenium库和正则表达式对CSDN的活动文章进行爬取,并将爬取到的数据导出到Excel文件中。...pandas是一个强大的数据分析库,用于创建和操作数据表格。 selenium是一个用于自动化浏览器操作的库,我们使用它来控制Chrome浏览器进行页面爬取。...构建数据表格和导出到Excel 我们使用Pandas库来构建数据表格,并将爬取到的数据导出到Excel文件中: data = [] for match in matches: url = match...Pandas:Pandas是Python中常用的数据分析和数据处理库。它提供了丰富的数据操作和处理功能,可以方便地进行数据清洗、转换、合并等操作。...在本文中,我们使用Pandas来构建数据表格并导出到Excel文件中。

    14110

    Pandas 秘籍:6~11

    从字面上看,我们正在将Weight列转换为当前一周的体重损失百分比。 为每个人输出第一个月的数据。 Pandas 将新数据作为序列返回。...准备 这个特定的混乱数据集包含变量值作为列名。 我们将需要将这些列名称转换为列值。 在本秘籍中,我们使用stack方法将数据帧重组为整齐的形式。 操作步骤 首先,请注意,状态名称位于数据帧的索引中。.../img/00160.jpeg)] 另见 Pandas wide_to_long的官方文档 反转堆叠数据 数据帧具有两种相似的方法stack和melt,用于将水平列名称转换为垂直列值。...通过将步骤 3 中的结果数据帧强制为序列,可以避免清理多重索引列。squeeze方法仅适用于单列数据帧,并将其转换为序列。...在内部,pandas 将序列列表转换为单个数据帧,然后进行追加。 将多个数据帧连接在一起 通用的concat函数可将两个或多个数据帧(或序列)垂直和水平连接在一起。

    34K10

    《利用Python进行数据分析·第2版》第12章 pandas高级应用12.1 分类数据12.2 GroupBy高级应用12.3 链式编程技术12.4 总结

    前面的章节关注于不同类型的数据规整流程和NumPy、pandas与其它库的特点。随着时间的发展,pandas发展出了更多适合高级用户的功能。本章就要深入学习pandas的高级功能。...pandas的分类类型 pandas有一个特殊的分类类型,用于保存使用整数分类表示法的数据。...来看一些随机的数值数据,使用pandas.qcut面元函数。...pd.Series(np.random.randn(N)) In [55]: labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4)) 现在,将标签转换为分类...表12-1 pandas的Series的分类方法 为建模创建虚拟变量 当你使用统计或机器学习工具时,通常会将分类数据转换为虚拟变量,也称为one-hot编码。

    2.3K70

    肝了3天,整理了90个Pandas案例,强烈建议收藏!

    如何通过名称或索引删除 DataFrame 的列 向 DataFrame 中新增列 如何从 DataFrame 中获取列标题列表 如何随机生成 DataFrame 如何选择 DataFrame 的多个列 如何将字典转换为...更改 DataFrame 指定列的数据类型 如何将列的数据类型转换为 DateTime 类型 将 DataFrame 列从 floats 转为 ints 如何把 dates 列转换为 DateTime...导入 CSV 指定特定索引 将 DataFrame 写入 csv 使用 Pandas 读取 csv 文件的特定列 Pandas 获取 CSV 列的列表 找到列值最大的行 使用查询方法进行复杂条件选择...Emp002 24 Doe 2 Emp003 34 William 3 Emp004 29 Spark 4 Emp005 40 Mark 19如何将字典转换为...object Food object Height int64 Score float64 State object dtype: object 29如何将列的数据类型转换为

    4.6K50

    资源 | Pandas on Ray:仅需改动一行代码,即可让Pandas加速四倍

    下面,我们会展示一些性能对比,以及我们可以利用机器上更多的资源来实现更快的运行速度,甚至是在很小的数据集上。 转置 分布式转置是 DataFrame 操作所需的更复杂的功能之一。...在以后的博客中,我们将讨论我们的实现和一些优化。目前,转置功能相对粗糙,也不是特别快,但是我们可以实现一些简单优化来获得更好的性能。...我什么时候应该调用 .persist() 将 DataFrame 保存在内存中? 这个调用在 Dask 的分布式数据帧中是不是有效的? 我什么时候应该重新分割数据帧?...这个调用返回的是 Dask 数据帧还是 Pandas 数据帧? 使用 Pandas 的数据科学家不一定非得是分布式计算专家,才能对数据进行高效分析。Dask 要求用户不断了解为计算而构建的动态任务图。...使用 Pandas on Ray 的时候,用户看到的数据帧就像他们在看 Pandas 数据帧一样。

    3.4K30
    领券