我正在尝试使用db4小波和5级分解来分解给定的波。下面是相同的代码:
coeffs = pywt.wavedec(yourResultA,'db4',level = 5)
然而,编辑器给了我以下错误:
Level value of 5 is too high. Maximum allowed is 0.
我不理解这个错误的含义,因为0级没有任何意义。我甚至尝试使用以下代码来查找db4小波的最大可能级别:
w = pywt.Wavelet('db4')
x = pywt.dwt_max_level(len(yourResultA), w)
这里x的值是15,所以
我需要绘制以下表达式的波形:
。
我不明白如何将小波定义为时间't‘的函数(我将在哪里定义't’)?
如何缩放和平移小波?
[phi,psi,xval] = wavefun('db4',10); %extracting the psi function from db4
[a,s]=size(psi); %extracting the number of samples.
yc(t,1)= yc(t,1)+abs(dataMod(x,1))*dataMod(x,1)*(2^m)*psi(1,(10*(2^m)*t-k));
在这里,
我搜索以绘制具有离散时间信号的时频信号(采样步长=0.001秒)。我使用Python和Scipy.signal库。我使用函数cwt(数据,小波,宽度),它返回一个矩阵,用复数morlet小波(或gabor小波)进行连续的小波变换。不幸的是,关于这种用法的文档并不多。我找到的最好的是:- for Matlab (我试图找到相同的尺度-时间结果),但我自然无法访问相同的函数,-和,它解释了什么是连续小波变换,没有小波参数的细节。
第一步:获取尺度平移信号。有疑问的是,我直接将数组“宽度”与可能的不同尺度的数组关联起来。因为,如果不是比例,我不知道什么是参数宽度。也许,你会告诉我“这是你当前小波的
我指的是,第二页右栏第二段,其中描述了如何生成四重密度小波系数:
如果不对小波系数进行下采样,则生成双密度小波,其中n级小波每1/2×2^n中心,生成四重密度字典,用不下采样的方法计算双密度尺度系数。下一步是分别计算两组标度系数(偶数和奇数)上的双密度小波系数。
我很困惑如何得到two sets of scaling coefficients - even and odd。even and odd是什么意思?
. those =‘those 1’>把原始图像矩阵分解成只有偶数指数(0,0) (0,2)的两个矩阵.奇数指数(0,1),(0,3).?优点是什么?
谢谢
我使用的是scipy的连续小波变换。 在文档中,signal.ricker函数用于小波: https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.cwt.html 代码使用signal.ricker函数,该函数使用墨西哥帽小波: from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
import pywt
sig = data
widths = np.arange(1, 31)
cw = signa