输入维度input_size是2,因为使用2个月的流量作为输入,隐藏层维度hidden_size可任意指定,这里为4
class lstm_reg(nn.Module):
def __init_...def forward(self,x): #定义model类的forward函数
x, _ = self.rnn(x)
s,b,h = x.shape #矩阵从外到里的维数...#view()函数的功能和reshape类似,用来转换size大小
x = x.view(s*b, h) #输出变为(s*b)*h的二维...x = self.reg(x)
x = x.view(s,b,-1) #卷积的输出从外到里的维数为s,b,一列
return x
net = lstm_reg(2,4)...loss.backward() #计算得到loss后就要回传损失,这是在训练的时候才会有的操作,测试时候只有forward过程
optimizer.step() #回传损失过程中会计算梯度,然后