首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

清华大学李涓子:AI系统如何实现认知推理

人工智能系统如何实现知识的表示和推理?...在2021年世界人工智能大会上,由AI TIME组织的“图神经网络与认知智能前沿技术论坛”中,清华大学计算机系教授李涓子围绕“知识图谱与认知推理”做了主题报告,从问答系统的角度解释了AI如何实现认知推理...图 2:认知推理框架 以下是报告全文,AI科技评论做了不改变原意的整理。 1 认知 VS 知识 图 3:本体 认知是人获取并应用知识的过程,知识图谱是人表示客观世界认知的一种形式。...诺贝尔经济学奖获得者丹尼尔卡尼曼提出,在人的认知系统中存在系统 1 和系统 2,其中系统 2 进行较慢的逻辑化、序列化的推理。...3 可解释的认知推理 图 13:问答系统 我们团队从图灵测试出发,尝试在问答任务中探索可解释的认知推理技术。

1.2K40

检修盒面板AI视觉检测系统,赋能工业发展!

制造业是中国工业化的源头,也是工业生产大国。任何一步的质量都可能影响生产过程的变化。表面缺陷不仅影响产品的美观和舒适性,还会对其性能产生不良影响。因此,制造商对产品的表面缺陷检测非常重视。...对于一些重要的按钮,尤其是停机和上下键安装错误,很容易导致严重事故,因此迫切需要使用人工智能检测手段,引入机器视觉检测,配合AI智能化算法,有效控制产品质量,从而消除或减少缺陷产品的产生,提高生产效率。...图片一、系统架构AI视觉检测系统主要通过光源和图像传感器(工业相机)获取产品的表面图像,利用图像处理算法提取图像的特征信息,然后根据特征信息对表面缺陷的定位、识别、分类等判定与统计,通过图像采集、图像校正...二、系统功能图像采集:500万像素8帧/秒定焦定高工业相机,由算法自动处理,面板高度不同带来的对焦可调整;图像预处理:预处理算法消除每个面板的长、宽、高均不相同,模板制作的好坏、视差的高低所带来的影响。...可扩展性:该系统可不仅仅局限于检修盒面板的检测,所有可以用模板匹配方法解决的问题,都可以无缝采用该软件系统。三、系统软件检验窗口:支持查看待检设备及模板图像、检验结果等,设置系统初始化配置。

1.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    推理加速GPT-3超越英伟达方案50%!最新大模型推理系统Energon-AI开源,来自Colossal-AI团队

    因此,多卡并行被视为AI大模型推理的必然选择。 但现有的推理系统仍旧存在不少弊端。 比如需要用户对通信、内存等各部分协作进行手动管理,需要额外编译等……导致用户使用门槛居高不下。...为此,大规模并行AI训练系统Colossal-AI团队提出了大模型推理系统Energon-AI。...而当前的深度学习推理系统,主要面向多实例单设备以及单实例单设备的简单推理场景,忽视了AI大模型推理所需要的单实例多设备的挑战与机遇,Energon-AI系统正是为了解决这一痛点而生。...△模型参数的迅速增长[https://arxiv.org/abs/2111.14247] Energon-AI系统设计 面向AI大模型部署,Colossal-AI团队设计了单实例多设备推理系统Energon-AI...△Energon-AI超大模型推理系统示意图 Energon-AI系统设计分为三个层次,即运行时系统(Runtime)、分布式推理实例(Engine)以及前端服务系统(Serving): Runtime

    1K10

    推理加速GPT-3超越英伟达方案50%!最新大模型推理系统Energon-AI开源,来自Colossal-AI团队

    因此,多卡并行被视为AI大模型推理的必然选择。 但现有的推理系统仍旧存在不少弊端。 比如需要用户对通信、内存等各部分协作进行手动管理,需要额外编译等……导致用户使用门槛居高不下。...为此,大规模并行AI训练系统Colossal-AI团队提出了大模型推理系统Energon-AI。...而当前的深度学习推理系统,主要面向多实例单设备以及单实例单设备的简单推理场景,忽视了AI大模型推理所需要的单实例多设备的挑战与机遇,Energon-AI系统正是为了解决这一痛点而生。...△模型参数的迅速增长[https://arxiv.org/abs/2111.14247] Energon-AI系统设计 面向AI大模型部署,Colossal-AI团队设计了单实例多设备推理系统Energon-AI...△Energon-AI超大模型推理系统示意图 Energon-AI系统设计分为三个层次,即运行时系统(Runtime)、分布式推理实例(Engine)以及前端服务系统(Serving): Runtime

    1.5K20

    AI、机器学习和深度学习的未来

    事实上,数十年以来人们在日常生活的方方面面都会使用到 AI。从智能手机上的语音识别,房间清扫机器人,再到提醒你会议召开的虚拟助手,AI 已经证明自己是信息、学习、推理、计划和交流的重要提供者。...谷歌把深度学习用于语音和图像识别算法,亚马逊使用它来确定客户接下来想看什么或者什么。 AI 影响我们的三种方式 AI、机器学习和深度学习可以组合在一起运用,从而帮助企业发展得更智能,更好,更快。...工业革命使我们从大规模生产转向自动化。从第一批机器人在生产线上工作以来,已经有半个多世纪了。如今,被称为工业 4.0的制造通过运用 AI、机器学习和物联网将变得更加智能。...《美国银行家日报》的一篇报告指出,财富管理公司BlackRock的 AI 引擎 Aladdin 如何帮助制定投资决策; 同时该公司还将该系统提供给客户,已有近3万人使用该系统。...从当前情况考虑,利用 AI 技术能够使公司运作更高效。 2.分析你目前的工作对于团队,合作伙伴和客户的影响。在哪些方面,你的工作可以被显著提高? 3.评估你现在的能力,并做出改进。

    849100

    【NVIDIA GTC2022】在自动光学检测(AOI)领域中推广Jetson Xavier 方案到底解决哪些痛点?

    那么让我们来看看人工智能的实施阶段,如果我们不知道人工智能采用的流程,我们将永远不知道问题出在哪里。...第五个话题,我要和大家分享的是带有AI推理引擎的AOI的硬件系统。...如左图所示,在POE阶段通常使用一个带RTX GPU卡的工业电脑把控制系统推理系统放一起,因为非常简单,但是对于生产线中,AI推理与控制系统分开是非常重要的,因为你除了GPU卡外,还会要添加POE卡、...但是,你看到右边的图,我们可以使用Jetson Xavier系统作为推理引擎,与机器控制系统分离。...其次是灵活性,有时单个 RTX GPU 的性能无法达到客户的要求,但多 GPU 服务器解决方案的成本仍然很高,通过将多个带有以太网的 Jetson AGX Xavier 连接到 AI 机器,系统可以灵活性地扩展推理性能

    2.4K20

    加速AI边云协同创新!KubeEdge社区建立Sedna子项目

    数据在哪里,计算就应该在哪里,人工智能也正逐步向边缘迁移,将云上AI能力下沉到边缘节点,做到本地处理,打通AI的最后一公里。...比如园区里面随处可见的智能摄像头,进行人脸识别,车牌识别;家里面的智能电视,智能音响;工业领域里面的无人机进行电力线路智能巡检等等,边缘AI正在极大的提高了我们的生产生活效率。...联合推理: 针对边缘资源需求大,或边侧资源受限条件下,基于边云协同的能力,将推理任务卸载到云端,提升系统整体的推理性能。...2)LocalController:实现增量训练、联邦学习、联合推理特性的本地闭环管理。数据集和模型管理的本地控制,AI任务的状态同步等。...3)Lib:给应用提供边云协同AI特性接口,用户基于该Lib实现边云协同的训练、聚合、评估和推理

    1.6K30

    外星人到底在哪?普利茅斯大学新建AI寻系外生命系统

    最近,天文学家把希望放在了AI身上。 普利茅斯大学机器人及神经系统中心(CRNS)今天将会在英国利物浦的欧洲天文与空间科学周(EWASS)汇报用AI寻找外星人的研究进展。 ?...△ ALMA天文台的简单介绍 他们的AI系统工作原理,是把系外观测到的行星分为五类:和目前地球最相似的、和早期地球状态相似的、类火星的、类金星的以及类土星卫星泰坦的。...这两个任务都会收集到大量的数据,普利茅斯大学机器人及神经系统中心所训练出的AI模型正好可以分析这些数据,从中寻找可能存在生命迹象的星球。 “就目前的结果来看,先把系外行星分类的方法被证明相当有用。”...盖房的事就交给AI机器人Justin吧

    34030

    大会 | AITech 次日,脑科学、智能外科、多模态智能等多个话题引热议

    跨模态感知推理表达 作为首位上台演讲的嘉宾,京东 AI 平台与研究部 AI 研究院常务副院长何晓冬博士带来了主题为《多模态智能:语言和视觉的感知、推理及表达》的演讲。...为了模拟推理,他们做了一个基于多重关注神经网络的系统,主要涵盖四个模型,语言模型、图像模型、多重关注模型、答案预测模型,他也进一步讲解了这些模型具体的功能以及整体推理过程。...聚焦 AI 安全热点,促进产业健康发展 聚焦 AI 安全热点,促进产业健康发展 第二位演讲嘉宾是国家工业信息安全发展研究中心副主任李新社,他主要谈到我国人工智能发展态势以及 AI 安全方面的问题...他表示,基于以上种种谈到的技术,我们探讨 AI 落地时,未来企业的发展应该是以机器智能为核心。而他也描绘了人工智能落地的过程——目标在哪里?数据在哪里?问题边界在哪里?特征在哪里?...她接下来提到三层因果关系,即 Counterfactuals,Intervention,Association,之后,她说明了因果模型能解决目前 AI 系统的局限性,最后,她详细描述了来自因果推理的七个启发

    1K60

    可省近90%服务器,反欺诈效率却大增,PayPal打破「AI内存墙」的方案为何如此划算?

    机器之心原创 作者:张倩 内存不够只能割肉 DRAM?英特尔:很多时候大可不必。 人们常说,新一代的人工智能浪潮是由数据、算法和算力来驱动的。...但实际上,还有很多工业界应用场景的机器学习或深度学习模型可以使用 CPU 与内存来做推理,例如推荐系统、点击预估等。...工业界的推理拦路虎:内存墙 在工业场景下,海量数据、高维模型确实能带来更好的效果,但这些数据的高维、稀疏特征又为计算和存储带来了很大的挑战。...毕竟像推荐系统这样的模型,隐藏层大小可能就是数百万的量级,总参数量甚至能达到十万亿的量级,是 GPT-3 的百倍大小,所以其用户往往需要特别强大的内存支持系统才能实现更好的在线推理能力。...相信如果把它换成 AI 加速能力以及内存子系统带宽和性能表现更优的第三代英特尔® 至强® 可扩展处理器,这种打破内存墙的效果将更加明显。

    1.8K10

    漆远:小数据学习和模型压缩存挑战,场景成为 AI 技术发展关键

    “于是我们就在CTR预估上采用了这个系统。因为这个系统只要能提升1‰,就有很多收益;提升1% 的收益就更多。...它带来了图像识别、语音识别、NLP 等领域的长足进步,但是它的落地点在哪里?这就要问你的核心价值在哪里。一开始我们就很具体,就做客服。...PPT上显示的是三个简单的真实APP展示,展示了机器人本身是怎么来回答问题的;第二,在你没有问问题之前,不靠语音信号或者NLP输入信息,而是通过用户的行为轨迹自动判断当前可能的问题在哪里,系统会根据用户的行为轨迹做出时间训练模型进行分析...基于加强学习的对话系统 “其实在对话系统没有很多数据的情况下,一开始你很难做加强学习,有可能你就只能做一个规则技术。...推理和知识图谱 很多问题需要你做推理,如果A发生了,到B,B发生,回到C,你怎样把推理过程做好?今天,大家做了很多深度学习,比如说一个文本里面,A会导致B的发生,你把这个相关的答案找到。

    3.1K30

    腾讯5位「数智人」出场,满屏元宇宙!

    此外,现在的智能家居系统都是基于整个APP去开发,从下载到安装,从注册用到扫码设备,然后再去进行配置,一条路走下来没有5分钟也有15分钟。...另外,腾讯连连还能兼容不同品牌的智能终端,进而实现了从专业做冰箱的企业那里冰箱,从专业做电视的企业那里电视,然后用户只需要用自己的微信就能一键进行控制。...至少在MIM技术的外观AI检测系统上,腾讯云的技术已经处在行业最领先的水平。 此外,腾讯云智能还为开发者提供了一套完善的平台和工具,不仅降低了门槛,而且简单易用。...还以工业场景为例,其实传统工业IT主要是基于机器视觉的方法做盲测,比如说长度、宽度,这相对来说是原来的机器学习比较容易去解决的。...智能生态层,聚焦消费互联网、产业互联网及可持续社会价值创新三大方向,面向金融、工业、教育、医疗等各行业提供了超过90种全套智能化解决方案。

    1.1K20

    工业化”,腾讯、网易、阿里游戏下个“突破点”?

    一个行业要形成工业化体系,需具备三要素:能源、动力转化系统、基础设施。最后一个要素具体指玩家群体和游戏市场,国内规模已十分庞大。相比之下,能源、动力转化系统要素仍在高速发展。 一....“动力转化系统”:游戏营销走向精细化 在游戏研发工业化过程中,游戏营销工业化在同步进行。作为“动力转化系统”的一部分,将“能源”转移给消费市场。...根据《2020移动游戏全年量白皮书》显示,网易、阿里游戏、腾讯等研运一体化的游戏厂商霸占量公司榜前三位置。在头部量公司榜中,游戏大厂、老牌量厂商占8成,游戏行业寡头化趋势愈发明显。...“两化”,正是工业化的标志,也为游戏创造更高收入、更大利润的可能。 游戏营销工业化背景下,主流广告平台实现成功,并不是简单在于降低了量成本,而是整体提高了量效率。...所以对于游戏营销而言,成本降低只是表面,而提高生产力即效率才是其工业化的最终答案。加上游戏研发工业化,整个行业的品质和效率都获得了提升。 AI, 游戏工业化下一个突破点?

    94310

    Quant 4.0:你的量化研究处于哪个时代?

    Quant 2.0 将量化的研究模式从小型的天才工坊转变为工业化、标准化的阿尔法工厂。...预测模型告诉我们什么或什么时候/卖,而投资组合优化则指定/卖多少。一个典型的投资组合优化器试图解决一个约束凸二次规划问题,该问题是由马科维茨的有效前沿理论扩展而来的。...它不仅仅是简单的代码和数据的传递,还包括数据和因子依赖的同步,交易服务器和系统的适配,模型推理的调试,计算延迟的测试等。 模型部署中的一个重要问题:如何加速高频交易和算法交易场景下的深度学习推理。...我们提出了一种自动化的一键部署解决方案,利用模型编译和模型压缩等技术来实现推理加速。前者在不改变模型本身的情况下使推理更快,后者寻求更小、更轻的替代模型来节省推理时间。...--- Quant 4.0 这是一个新的时代 这是一个可以超越的时代 关于AI可解释及知识驱动型AI在量化研究的内容,我们下篇再分享,敬请期待~ 欢迎留言讨论 - 你们公司的量化研究处在哪个时代?

    1.1K21

    黄仁勋答量子位:纵使特斯拉负我,依旧会;投无人车不赌输赢

    今天上午,我围绕5个方面进行了演讲,分别是计算力、AI推理加速、AI城市、自动驾驶和自主机器及处理器。我们现在不再多谈。(详情可见昨日报道) 欢迎大家提问。...上午大家都看到了演示,在电视连续剧《权利的游戏》中,我们就可以直接用GPU完成视频解码,然后进行推理,进而实现搜索。...提问:AI领域学术界和工业界的差距似乎在逐渐拉大,NVIDIA在工业界布局很多,学术界方面有什么思考吗?...第一,如果特斯拉与其他的厂商合作做了自动驾驶芯片,你还不买特斯拉?第二,NVIDIA投资了图森、景驰这样的自动驾驶公司,这与跟他们合作有什么不同? 黄仁勋:我当然还会他们的车。...因为这是软件定义的车,未来十年一定会成本大幅降低,每一个部件都可以是独立的系统,各个功能都会是软件定义的,软件很棒,没有污染,也没有排放,我爱软件。

    84150

    面向NLP的AI产品方法论——如何通过数据分析迭代优化

    一些关键词搜索,必然是用户表述的一些话,很容易就推理出,用户必然受挫,只不过情绪程度不一样。 另外一种就是使用模型算法,一般是用于舆情监控用的,可以抓出来用户的积极/消极情绪和言论。...找到这些东西之后,然后分析这些话术出现在哪些技能里面,分布在哪个环节上,问题就自然暴露出来了。 二、是什么导致任务未完成 用户使用AI助手,就是为了完成任务的。...很容易形成一个数据漏斗,看看问题主要集中出现在哪。 先解决有无结果的问题,然后才有条件去讨论结果优劣。...兜底闲聊能接上话就好,一般AI认怂话术是,“抱歉我不明白,请对我说blablabla……” 如果上面的例子比较扯的话,来看下面在电影场景下正常一些的例子。...同理推理出,在使用其他技能的时候,一定会有关联查询的,这就是通过分析得出的一个小优化点。这些都是通过数据分析暴露出使用习惯,而做出的优化行为。

    2.4K10

    独家 | 蚂蚁金服漆远首谈刚完成的AI重大突破及紧缺人才,呼吁国内多点技术性强的大会,少点网红

    工业界讲究稳定性,在稳定的技术上讲究速度和计算的资源消耗程度,然后才是准确性。 CSDN:目前来说,您主要的精力是抓什么?...比如你要找到一个埋得很深的城市服务,打车,电影票,你对助理一说,就完成了。这个是我们比较关心的方面,涉及到很多机器学习,自然语言处理,对话技术,知识图谱还有推理能力。...漆远:金融大脑的核心能力就是推理推理是一个核心问题。从推理到决策,怎么能够保证它是一个系统化的风险刻画,而不是单个的单点的刻画。...但金融里面很多是一个网络结构,是一个系统。 这与大家平时外面听得比较多的图像识别不太一样。 CSDN:智能助理,从您开始创立到现在,已经到了什么阶段,取得了什么实质性的效用呢?技术难点在哪里?...一个是物理上非均匀态的物理学和机器学习的结合; 第二个是非均匀动态变化系统和机器学习的结合,我们叫动态系统; 第三个是博弈论和机器学习的结合。

    1.5K80

    前阿里P10大神AI创业,主打决策智能,从《星际争霸II》开始

    袁泉和龙海涛其人 袁泉,离职前担任阿里认知计算实验室负责人、资深总监,是手机淘宝、手机天猫推荐算法团队缔造者,2013年到2016年期间率队打造了“千人千面”的手淘推荐系统,因此还拿下了当年双11的CEO...在2013-2017年期间,龙海涛在阿里巴巴负责搜索广告业务的架构设计,主导了其核心的离线系统、在线引擎和索引内核的升级换代,并因此获得了阿里妈妈“最佳团队奖”、“最佳项目奖”和“双十一个人创新特别奖”...第四,时间、空间上的推理。...想要玩好星际,必须基于时序上、空间上去做推理,比如说地理位置的优势,坦克如果架在哪里可能会比较好,如果开分机在哪个位置去开会比较有利,甚至于军营造在什么地方,这些对于AI来说都需要进行一个空间上的推理。...当然,更长远未来,从《星际争霸》中学习训练的AI,还会进入各行各业,从工业机器人的生产与操控,到自动化农业,智能交通、物联网领域,都不缺乏应用场景。 作者系网易新闻·网易号“各有态度”签约作者

    1.1K20

    神经符号系统、因果推理、跨学科交互,李飞飞、Judea Pearl等16名学者共同探讨AI未来

    这些问题的唯一系统。 接下来,机器学习研究科学家 Robert Ness 谈论了「因果推理与(深度)概率规划」。 Ness 表示:「概率规划将是解决因果推理的关键。」...她谈到了语言的重要性,并表示语言是「生成任务的推理」。她认为:「我们人类执行的是即时推理,这将成为未来 AI 发展的关键和根本性挑战之一。」...Yejin Choi 指出:人类有能力信任新奇的事物,并进行奇怪的因果推理。她问道:「我们是否想要建立一个类人的系统?」...一种是直观形式,另一种是更高级的推理形式。 Kahneman 认为,System 1 包含了任意非符号事物,但这不意味着它是非符号系统。...她以内容推荐的 AI 系统为例,认为此类系统会使人们形成「更强大的、难以纠正的错误认知」。比如亚马逊和领英利用 AI 进行招聘,可能对女性候选者造成负面影响。

    66820
    领券