7月19日,腾讯云在工业质检合作伙伴沙龙暨生态联盟发布会上,宣布升级发布工业质检训练平台TI-AOI 2.3版本,并携手首批合作伙伴成立工业AI质检生态联盟,共同推动人工智能技术与实体产业深度融合,助力行业加快发展新质生产力...腾讯云副总裁、腾讯云智能产研负责人吴永坚表示,腾讯云在工业质检领域深耕多年,现已构建起包括工业质检训练平台TI-AOI、腾讯云TI平台等在内的AI视觉检测产品矩阵。...此次升级发布的工业质检训练平台TI-AOI,是面向工业视觉质量检测场景推出的零代码开发和交付工具,它以深度学习检测为核心,构建起一个高效、稳定的数据处理和工作流程。...做好工业AI质检项目,需要“光、机、电、软、算”软硬件一体化的系统工程能力。...此次成立工业AI质检生态联盟,是腾讯云工业AI质检生态的进一步深化。
制造业是中国工业化的源头,也是工业生产大国。任何一步的质量都可能影响生产过程的变化。表面缺陷不仅影响产品的美观和舒适性,还会对其性能产生不良影响。因此,制造商对产品的表面缺陷检测非常重视。...对于一些重要的按钮,尤其是停机和上下键安装错误,很容易导致严重事故,因此迫切需要使用人工智能检测手段,引入机器视觉检测,配合AI智能化算法,有效控制产品质量,从而消除或减少缺陷产品的产生,提高生产效率。...图片一、系统架构AI视觉检测系统主要通过光源和图像传感器(工业相机)获取产品的表面图像,利用图像处理算法提取图像的特征信息,然后根据特征信息对表面缺陷的定位、识别、分类等判定与统计,通过图像采集、图像校正...二、系统功能图像采集:500万像素8帧/秒定焦定高工业相机,由算法自动处理,面板高度不同带来的对焦可调整;图像预处理:预处理算法消除每个面板的长、宽、高均不相同,模板制作的好坏、视差的高低所带来的影响。...可扩展性:该系统可不仅仅局限于检修盒面板的检测,所有可以用模板匹配方法解决的问题,都可以无缝采用该软件系统。三、系统软件检验窗口:支持查看待检设备及模板图像、检验结果等,设置系统初始化配置。
定义什么是工业控制系统,它们为何如此重要,以及保护它们的独特挑战。 欢迎阅读关于工业控制系统 (ICS) 网络安全的多部分系列的第一部分:ICS 安全简介。...在第一篇博文中,我们将向您介绍这些系统是什么,解释它们为何如此重要,并概述保护 ICS 的独特挑战。 什么是工业控制系统? 工业控制系统用于管理、指导和调节自动化工业过程的行为。...另一方面是大规模、复杂的环境,需要多个不同的系统协同工作,以实现工业设备功能的自动化。...业务系统——企业级服务,使用 ICS 运营数据和遥测技术进行业务应用程序,如计费、建模、趋势和报告。这些系统不被视为工业控制网络的一部分。 为什么要关心 ICS? 工业控制系统基本上无处不在。...必须精心计划因对这些系统进行更改或安装更新而导致的任何停机时间,以确保将服务中断降至最低水平。 虽然它们可以处理复杂的工业应用,但工业控制系统具有内在的简单性:它们控制着它们设计的过程,仅此而已。
而从较为成熟的AI质检领域,我们可以窥视腾讯布局智能工业的情况和实力。 一方面,自动化检测系统和人工相结合,提高准确率。...基于腾讯优图AI技术,腾讯构建自动化缺陷分类和检测系统,覆盖了大部分人工目检工作,“智能化+人工”检测大幅度提升质检的精细化、精准化程度,极大的提升生产效率。...据悉,腾讯AI质检系统已经在PCB板缺陷检测、锂电池缺陷检测、面板缺陷检测等多个方面得到落地应用。...在智能质检方面,百度大脑开放智能质检生态合作方案,为传统工业企业提供优质的算法模型和AI加速硬件模组,并搭建质检模型在线训练平台,加速向工业质检细节渗透,推动传统工业产业改造升级。...据悉,包括大恒图像、拜耳、小零科技等诸多企业都是百度AI质检系统的受益者。 除此之外,AI人才培养,也是百度“ALL in AI”目标里的重要环节。
Reality AI 面向工业场景的嵌入式AI应用,如加速度传感器和震动传感器数据,环境音识别等,极大的扩展了 AI On-edge的应用领域。 ?...如以下视频,通过实时手机的加速度传感器的不同状态的数据,通过云端训练对设备的不同状态加以区分,预测加速度传感器设备的剩余适用寿命,并对设备异常加以推理和预测。 ? 或者可以识别不同的环境音- ?...对于AI的工业级应用,有效的数据搜集和标记是AI模型训练和预测的关键,Reality.ai更可以提供详细的工具和指引 - ?...可通过如下链接了解更多内容,更可以下载白皮书 -- https://reality.ai/successful-data-collection-for-machine-learning-with-sensors-part
《系统日报》持续关注分布式系统、AI System,数据库、存储、大数据等相关领域文章。每天以摘要的形式精选不超过三篇系统文章分享给大家。...以GPT3为代表的大深度学习模型是现在很火的技术,Colossal-AI 的目标就是解决大模型训练过程遇到的各种分布式难题。...最近几年的 AI 模型正在急速变大,训练常常需要需要多个 GPU,比如训练 GPT3 需要几千个 GPU。因此,在多个 GPU 上分布式训练前沿 AI 大模型已经成为业界常态。...Colossal-AI 的愿景是让用户仅需少量修改,便可将已有 PyTorch/TensorFlow 项目与 Colossal-AI 结合,快速将单机代码自动、高效地扩展为分布式系统。...Feature Map):每一层输出的中间结果,训练过程中每个神经网络层的输出。 Colossal-AI 实现的分布式训练技术包括数据并行、张量并行、流水线并行、ZeRO并行和 offload 并行。
浅谈工业级推荐系统 我于2020年8月受“第一届工业级推荐系统研讨会”的邀请,做了题为“工业级推荐系统最新的挑战和发展”的主题演讲。...工业级推荐系统及其生态系统 ---- 工业级推荐系统和学术研究中的推荐系统最大的一个区别,也是最容易忽视的一个区别在于,前者往往是某个产品中的一个环节,甚至有时候是一个很小的环节。...工业级推荐系统作为复杂的软件系统 ---- 这里要提到的最后一个工业级推荐系统的特性,也是推荐系统的学术研究往往会完全忽视的,那就是工业级推荐系统往往是一个复杂的软件系统。...从软件系统的角度来看,工业级推荐系统和推荐系统研究有着比较大的差别。...总结点评 ---- 我们在这一篇文章中为大家阐述了三个工业级推荐系统的重要特征。这三个特征都有别于推荐系统的主流学术研究,但都是推荐系统应用到工业界产品中所需要思考的问题。
最近一年,AI领域出现了很多迁移学习(transfer learning)和自学习(self-learning)方面的文章,比较有名的有MoCo,MoCo v2,SimCLR等。...01 使用监督学习获得预训练模型 作为实验,研究者首先在Imagenet上训练分类网络作为预训练模型,之后监督得到的预训练模型作为骨干网络在COCO数据集上进行训练。...不同数据增强模式下基线、监督式预训练、自训练式预训练下的目标检测结果对比 ? 不同数据增强模式下基线、监督式预训练、自训练式预训练下的目标检测结果对比 ?...统一实验条件下三种预监督方法对比 作为与监督预训练与无监督预训练的对比,对照实验表明使用自训练方法得到的预训练模型在各种数据增强模式,不同主任务训练集尺寸的情况下都能获得明显受益,且显著优于基线(不使用预训练模型...在语义分割方面,研究者也证明了自训练的预训练方式比监督式预训练可以达到更好的效果: ?
服务器提供:企业活动目录 (AD)内部电子邮件客户关系管理 (CRM) 系统人力资源 (HR) 系统文件管理系统备份解决方案企业安全运营中心 (SOC) 第 4 级:业务网络 本地站点业务用户的 IT...基本传感器和执行器使用现场总线协议的智能传感器/执行器智能电子设备 (IED)工业物联网 (IIoT) 设备通信网关其他现场仪表 理想情况下,到 ICS 的远程连接应该通过 IT 和 OT 段之间的非军事区...为了降低这种风险,Active Directory 应由对 Active Directory 有深入了解的训练有素的员工管理。不要害怕利用组织 IT 管理员的 AD 知识和经验。...为了工作场所的安全,工业环境中的工作人员定期参加安全会议并穿戴个人防护设备。将这些措施与安全远程访问连接所需的步骤联系起来有助于让远程用户相信它们的重要性。...此外,关键基础设施安全局 (CISA) 为“配置和管理工业控制系统的远程访问”[1] 提供了指导。尽管它于 2010 年发布,但该指南在今天仍然非常重要。
安全 ICS 架构的 Purdue 模型和最佳实践 在本系列的第一部分中,我们回顾了工业控制系统 (ICS) 的独特沿袭,并介绍了保护 ICS 的一些挑战。...普渡企业参考架构简介 Purdue 模型创建于 1990 年代初期,旨在为工业控制系统和业务网络之间的关系定义最佳实践(或使用可互换的术语,在 OT 和 IT 之间)。...示例包括: NIST 网络安全框架 (CSF) NIST 800-82(工业控制系统安全指南) ISA 99.02.01/IEC 62443:工业自动化和控制系统的安全 NIST Cybersecurity...Purdue 模型对这些指南和出版物的影响很明显,它们都促进了工业网络环境中系统的有效分段和隔离,并要求在它们之间的边界进行安全控制。...智能电子设备(IED) 工业控制系统随处可见,例如监控和数据采集 (SCADA) 或分布式控制系统 (DCS),IED 是添加到 ICS 以实现高级电力自动化的设备。
基于符号主义的专家系统的衰落,让人们一度认为人工智能已走到尽头,2012 年的深度学习又点燃了希望,如今它已统领 AI 领域。随着系统规模越来越大,训练时间和资金成本也在不断膨胀。...根据斯坦福大学以人为本人工智能中心(HAI)基础模型研究中心(CRFM)的说法,「它(大模型)代表着构建 AI 系统的一种新的成功范式,在大量数据上训练一个模型,并使其适应多种应用」[2]。...他们表示,工业 AI 未来可以孕育出一个主动学习 AIaaS(AI As a Service,人工智能即服务)平台,通过算法工程师和标注专家的配合,利用 RLHF 技术训练大模型,用人类知识让 AI 理解工业问题...,并满足特定工业任务的要求,让不会编程的工业专家也能训练 AI 模型。...「只有当计算机系统可以突破工业落地中的几大难题,实现自动算法组合和部署,人类仅需参与少量定制化算法设计时,AI 的跨领域规模产业化才具备实现的可能。」贾佳亚曾表示。
AI视觉识别,主要是利用人工智能算法对图像或视频数据进行分析和处理,以提取关键信息并执行筛选、判断、预警等任务。AI视觉识别涵盖多种应用,如人脸识别、目标检测和识别、图像分割、行为识别、视频分析等。...本篇就简单介绍一下AI视觉识别的应用场景。1、质量控制和检验在制造领域,AI视觉识别可用于检查生产线上的产品是否存在缺陷,确保产品质量稳定,减少残次品。...3、智能安防在公共安全领域,AI视觉可以识别和跟踪公共场所中的在逃嫌疑人,以及可用于安全管制区域的访问控制。...5、智慧零售在零售领域,AI视觉识别可以通过监控店铺客流、货架消耗来分析营销和库存水平,提升店铺经营效率。6、智慧农业AI视觉识别可以通过空中或地面图像,识别监测作物生长状态、健康状况、病虫害情况等。...随着技术的不断进步,AI视觉识别在各行各业得到越来越普遍的应用,佰马科技面向AI + 物联网应用融合发展,推出多款AI智能网关,广泛应用于安全生产、智慧城市、智慧商业、智能制造、危险化工、校园安全、消防安全的行为监测
新智元报道 来源:TechCrunch 编译:肖琴 【新智元导读】一般的机器学习系统都是以人的视角建立,但华盛顿大学和艾伦人工智能研究所的研究人员试图用狗的行为数据训练AI系统。...研究人员通过传感器等设备采集了一只爱斯基摩犬的运动数据,并以此来训练AI系统实现三个目标:1、像狗一样行动,预测未来动作;2、像狗一样计划任务;3、从狗行为中学习。论文已被CVPR 2018接收。...我们已经训练机器学习系统来识别物体,进行导航,或识别面部表情,但尽管可能很难,机器学习甚至没有达到可以模拟的复杂程度,例如,模拟一只狗。...此外,与图像分类任务训练的表示相比,我们的模型学习到的表示能编码不同的信息,也可以推广到其他领域。...研究者用这个数据集来训练一个新的AI智能体。 对这个agent,给定某种感官输入——例如一个房间或街道的景象,或一个飞过的球——以预测狗在这种情况下会做什么。
本期飞桨EasyDL工业行业AI落地场景&案例课程,将重点分析工业质检、安全巡检、可预测维护等行业场景,助力工业企业AI技术的引入,让工业生产变得越来越智能。...工业能源消耗预测和优化 “双碳”目标下,2025年钢铁行业碳排放需降低99%以上,这无疑是一场广泛而深刻的系统性变革,高效的能源管理关乎制造企业经营效益提升和可持续发展。...3月8日,飞桨EasyDL工业行业AI落地场景&案例课程《工业能源消耗预测和优化》将给您带来一种AI驱动的节能方式——“预测性节能”,即多设备组合、负荷可变、利用人工智能算法对原有的控制系统进行优化的一种新的节能方法...,它可以实现: 从依赖人的经验到系统智能计算最优 从滞后的应激式调节到前瞻的预测性调节 从模糊的问题诊断到准确的根因判定与改善 此外还会基于某工业园区新能源发电预测和离散制造企业冰机能耗优化实际应用案例...3月22日,飞桨EasyDL工业行业AI落地场景&案例课程《厂区24H安全管理、异常监测》将分析AI助力厂区安全的全要素管理,并以某生产环境现场为案例,讲解AI如何辅助人工进行安全隐患的判断并及时预警,
作者:maopengwang 伴随人工智能的极速发展,AI工业也随之大放异彩,工业质检是整个制造中一个非常重要的环节,传统人工工业质检缺乏统一性标准,人工质检效率低,人工质检失误多,制造企业招工难,AI...智能质检也随之被各大AI公司看好,AI质检具有天然优势,成本低,效率高等,但如何工业AI质检有效落地是我们面临的一个巨大挑战,工业有本身行业的特殊性,质量标准,生产工艺,产品多样性都给AI质检系统带来阻力...01产品功能/使用 工业质检主要指标问题:过杀与漏检, 过杀是指工业产品是完好样品被AI质检系统判定为缺陷样品,漏检是指工业产品是缺陷样品被AI质检系统判定为完好样品,漏检的分析问题定位也是整个AI质检系统最难课题之一...,再根据图片特征进行比对得到余弦距离或者欧氏距离,例如使用最广泛的人脸比对,人脸聚类等,在工业该方案太过复杂,成本太高,模型训练,特征比对都是大工程,还考虑多项目迁移问题。...四大系统 交付快捷 打造4大系统覆盖从数据到应用服务的端到端需求,实现模型全生命周期管理,帮助企业快速搭建工业智能平台的一站式解决方案,算法模型交付即可用。
伴随人工智能的极速发展,AI工业也随之大放异彩,工业质检是整个制造中一个非常重要的环节,传统人工工业质检缺乏统一性标准,人工质检效率低,人工质检失误多,制造企业招工难,AI智能质检也随之被各大AI公司看好...,AI质检具有天然优势,成本低,效率高等,但如何工业AI质检有效落地是我们面临的一个巨大挑战,工业有本身行业的特殊性,质量标准,生产工艺,产品多样性都给AI质检系统带来阻力。...01 产品功能/使用 工业质检主要指标问题:过杀与漏检, 过杀是指工业产品是完好样品被AI质检系统判定为缺陷样品,漏检是指工业产品是缺陷样品被AI质检系统判定为完好样品,漏检的分析问题定位也是整个AI质检系统最难课题之一...,再根据图片特征进行比对得到余弦距离或者欧氏距离,例如使用最广泛的人脸比对,人脸聚类等,在工业该方案太过复杂,成本太高,模型训练,特征比对都是大工程,还考虑多项目迁移问题。...四大系统 交付快捷 打造4大系统覆盖从数据到应用服务的端到端需求,实现模型全生命周期管理,帮助企业快速搭建工业智能平台的一站式解决方案,算法模型交付即可用。
借助新的 NVIDIA Jetson AGX Xavier 工业模块,NVIDIA 使在安全性和可靠性至关重要的恶劣环境中的边缘部署 AI 成为可能。...这种新型工业模块扩展了 Jetson AGX Xavier 系统级模块的功能,使开发人员能够构建先进的、支持 AI 的加固系统。...Jetson AGX Xavier工业模组的规格: 专为可靠性、安全性和安保性而设计 Jetson AGX Xavier 工业模组 将 Jetson AGX Xavier 系统级模块的超级计算功能与在恶劣环境中部署...轻松构建和管理工业 AI 部署的软件支持 在 NVIDIA CUDA-X 加速计算堆栈和 JetPack SDK 支持的支持下,Jetson AGX Xavier 工业模组是一个完全由软件定义的平台...NVIDIA 的 CUDA-X 加速、NGC上的免费生产就绪预训练模型和NVIDIA 迁移学习工具包为开发人员提供了构建和部署深度学习以及 AI 训练和推理系统的最快途径。
[ 摘要 ]由于深度学习强大的特征提取能力,代替了人工目检和传统的机器视觉,成为了工业缺陷检测的新利器。然而,基于深度学习的语义分割技术在工业缺陷检测领域的应用仍具有挑战性。...本文先对比自然场景下的语义分割,概述了工业缺陷检测背景下语义分割技术的特点;接着,对于工业缺陷检测的常见难点,对常见的解决方案进行介绍。最后,作者提出了关于工业缺陷检测实际应用中一些问题的思考。...由于Dice loss函数的非凸特性,可能导致训练时不收敛,近年来也有Log-CoshDice Loss对数损失被提出[14]。 除此之外,数据增强也是一个从原始数据集中提取更多信息的方式。...数据增强的方法大致可以分为两个类型:转换现有图片,标签不变或者创造人工样本并加入训练集。...工业缺陷检测的另一个问题是不良品样本会在产线中不断产生。这就带来一个问题即:能否保持前期训练的模型,利用新数据追加训练模型。
随着工业革命的不断推进,人工智能等新技术新理念在各行业兴起。同时,各行业也逐步向数字化、智能化、自动化转型,进入现代化工业新阶段。...工业质检是整个制造中一个非常重要的环节,但工业AI质检的有效落地是我们面临的一个巨大挑战。 本期直播将为大家深入浅出讲解工业AI质检如何落地,全面助力实体经济转型。...更可获取最新腾讯云AI产品与解决方案手册 在线答疑工业AI相关产品咨询 腾讯云工业AI用户交流群 更多腾讯AI产品免费体验与合作联系 欢迎识别下方小程序码进入 燃烧的“蚂蚁呀嘿”同款,你get...腾讯云慧眼人脸核身通过信通院可信AI人脸识别评估 | 硬核!腾讯云慧眼完成NFEC首款移动金融客户端人脸识别技术检测 | 加速普惠AI,腾讯云AI在下一盘什么大棋?...| 点击下图可进入「腾讯云AI体验中心」免费体验
近些年来,在深度学习算法已经足够卷卷卷之后,深度学习的另一个偏向于工程的方向--部署工业落地,才开始被谈论的多了起来。当然这也是大势所趋,毕竟AI算法那么多,如果用不着,只在学术圈搞研究的话没有意义。...AI部署工业落地这块似乎还没有那么卷...相比AI算法来说,AI部署的入坑机会更多些。...聊聊AI部署 AI部署的基本步骤: 训练一个模型,也可以是拿一个别人训练好的模型 针对不同平台对生成的模型进行转换,也就是俗称的parse、convert,即前端解释器 针对转化后的模型进行优化,这一步很重要...系统的知识嘛,还在整理,还是建议实际中用到啥再看啥,或者有项目在push你,这样学习的更快一些。...AI部署中的提速方法 老潘这一年除了训练模型,也部署了不少模型。虽然模型速度有提升,但仍然不够快,仍然还有很多空间去提升。
领取专属 10元无门槛券
手把手带您无忧上云