问题描述 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。可以解释为,利用线性回归方程的最小平方函数对一个或多个自变量和因变量之间的关系进行数学建模。...这种函数是一个或多个称为回归系数的模型参数的线性组合。其中只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。本文将介绍一个二元线性回归问题。...解决方案 1 线性回归原理 回归问题研究的是因变量和自变量之间的关系,在中学阶段学习过以一个二元一次方程y = w*x + b 这样一条直线对线性关系的表述。...(注:这里的lr是一个学习率learningrate,可以把它理解为衰减系数,是为了避免b、w在更新时,跨度太大而跳过最小值。)...图2 运行结果 结语 通过这样一个简单的线性回归问题,可以初步感受到借助python语言来解决一个数据分析处理的问题的便携性和功能性是十分强大的。
对于回归而言,有线性模型和非线性模型两大模型,从名字中的线性和非线性也可以直观的看出其对应的使用场景,但是在实际分析中,线性模型作为最简单直观的模型,是我们分析的首选模型,无论数据是否符合线性,肯定都会第一时间使用线性模型来拟合看看效果...同样应用线性回归模型,可以看到数据本身非线性的情况下,普通线性拟合的效果非常差。对于这样的情况,我们有两种选择 1....计算完权重之后,还是采用了最小二乘法的思维,最小化误差平方和来求解线性方程,损失函数如下 ? 和普通最小二乘法相比,就是多了样本的权重矩阵。对于该损失函数,其回归系数的解的值为 ?...同时,相比普通的线性回归,局部加权回归的计算量也是非常大,需要对每一个样本进行遍历,计算样本权重矩阵,并求解回归系数,再拟合新的预测值,样本越多,计算量越大。...该代码针对1个样本进行计算,首先计算样本的权重矩阵,然后通过回归系数的求解公式求解出对应的系数,将样本的原始值乘以该系数,就得到了拟合之后的数值。
ex1.m %% Machine Learning Online Class - Exercise 1: Linear Regression % Instr...
详细解答多重共线性的影响不稳定的回归系数:当存在多重共线性时,回归系数的估计值会变得非常不稳定,对应的标准误差会增大。这意味着即使输入数据有微小的变化,回归系数的估计值也会发生很大的变化。...显著性检验失效:多重共线性会导致回归系数的显著性检验失效,具体表现为回归模型的总体检验(F检验)可能表明模型显著,但单个回归系数的t检验却显示不显著。这使得我们难以判断哪些自变量对因变量有实际的影响。...VIF的公式如下:其中,2是在预测第 个自变量时,其他自变量作为自变量的回归模型的决定系数。一般来说,如果 VIF > 10,说明存在严重的多重共线性问题。...多重共线性问题更为复杂,因为它涉及到多个自变量之间的关系,对模型的影响也更为显著。3. 什么是自相关性,自相关性对线性回归有什么影响?...标准误差的低估:自相关性会导致残差之间不再独立,进而使得标准误差的估计值偏低。这会导致回归系数的显著性检验失效,即实际不显著的回归系数可能被误认为显著。
本文将详细介绍线性回归中多重共线性问题,以及一种线性回归的缩减(shrinkage)方法 ----岭回归(Ridge Regression),并对其进行了Python实现 多重共线性 多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确...多重共线性对回归模型的影响 回归系数的估计值方差变大,回归系数的置信度变宽,估计的精确性大幅度降低,使得估计值稳定性变差。...而且有时数据特征本来就很少,或并不想直接删除特征,此时可考虑其他更加有效的方法。 改进线性回归即是当前解决多重共线性问题的最有效的方法。...(Lasso回归将在下一篇章介绍) 岭回归原理和逻辑是将求解 的过程转化为一个带条件的最优化问题,然后再用最小二乘法求解。...岭回归在多元线性回归的损失函数上加上了正则项,表达为系数 的L2-范式(即系数 的平方项)乘以正则化系数 。
而我们正则化中的惩罚项,是针对\theta_1开始的所有的参数的,所以我们在上图\theta_j的更新算法的基础上加上惩罚项,就变成了: ?...这个两个式子的比较很有意思,这个式子的后半部分和没有正则化之前的那个式子是一样的,只是前半部分\theta_j的系数由1变成了(1-\alpha*(\lambda/m)),这是一个比1略小的数,取决于\...如前所述,如果使用的时Octave的pinv函数去逆,这个时候依然是可以得到一个结果的,但用inv函数就得不到结果了。总之,这个不可逆问题好像是一个隐藏的炸弹,随时可能爆炸。...幸运的是,引入正则化项的同时还可以帮我们顺带解决这个不可逆问题。只要\lambda>0,下面的括号中的东西就是可逆的。 ?...小结 本小节,我们学习了引入正则化后,梯度下降、正规方程两种线性回归求解方法发生了什么样的变化。 我们还知道了,正则化在防止过拟合的同时,还可以顺便解决正规方程中不可逆的问题。
前面 有篇博文 讲了讲Ubuntu环境下安装TensorFlow,今天来说一说在TensorFlow中如何进行线性回归。...训练部分数据 ---- 模型 本次使用的是线性回归模型 y=Wx+by=Wx+b y=Wx+b 其中WWW为权重,bbb为偏置。...---- 几个问题 在迭代次数相同的情况下,调节学习率能非常有效的改变损失的下降速度,刚开始学习率是0.001,结果非常的不好,损失比现在的大0.3e09左右,一步一步加大学习率效果显著,即使现在的2也不算大...(对于这个问题),但是对于其他问题,要具体情况具体分析,这个学习率或许太过激进; 至于优化算法为什么不选用更为常见的tf.train.GradientDescentOptimize,刚开始我也是用的这个算法...即使我减小学习率也是杯水车薪,后来试用了这个Adam(Adaptive Moment Estimation)算法,结果没有那个问题了,其实还有其他的算法,我还没有来得及一个一个试,如果想了解各种梯度下降算法
pytorch中的线性回归 简介: 线性回归是一种基本的机器学习模型,用于建立输入特征与连续输出之间的关系。...线性回归原理 在线性回归中,我们假设输入特征 X 与输出 Y 之间的关系可以表示为: Y = WX + b 其中, W 是特征的权重(系数), b 是偏置项,用于调整输出值。...通常使用最小化均方误差(Mean Squared Error,MSE)来衡量预测值与真实值之间的差距。 实现线性回归 在 PyTorch 中,我们可以利用自动求导功能和优化器来实现线性回归模型。...下面是一个简单的线性回归示例代码: 我们的目的是:预测输入特征X与对应的真实标签Y之间的关系。...,线性回归模型的方程为: Y = 1.9862X + 0.0405 其中: Y 是预测的因变量值, - X 是自变量的值。
本文是YouTube上视频How to Do Linear Regression the Right Way笔记 假设我们有一堆数据,并且他们是线性相关的,那我们怎么找出最合适的那条直线呢?...可以通过每个点到直线的距离来定义整个合适,如图: ? 在上面的过程中,直线y=mx+b中m和b不管变化,从而找到最合适的直线,这个判断的依据就是: ?...上面公式的含义是:假设点是(x,y),那相同x的直线上的点就是:(x,mx+b),而这两者之间的距离就是(y-(mx+b)),为了防止出现负数,因此我们就计算了平方,有了这个衡量的标准后,我们就可以画出上面公式的一个图了...此处画出来是一个立体图,我们要找的一个最佳的直线,对应到图中其实就是一个最低点,更形象的例子是: ?...图中的函数f是一个表面,如果我们固定住y,则是一个曲线,如图中绿色的线,此时我们在计算点(a,b,f(a,b))在绿色线上的斜率,就可以得到沿着x方向的斜率了,同样的我们固定x,就可以得到y方向的斜率,
线性回归模型在数据分析中非常常用,但是实际中经典假设不一定都能完全符合,出现问题该如何解决?今天我们先看第一个问题:多重共线性。 多重共线性的定义 “多重共线性”一词由R....关于模型中解释变量之间的关系主要有三种: (1) 解释变量间毫无线性关系,变量间相互正交。这时多元回归的系数和每个参数通过Y对Xi的一元回归估计结果一致。...当相关性较弱时,可能影响不大,但是随着解释变量间的共线性程度加强,对参数估计值的准确性、稳定性带来影响。 检验多重共线性的常用方法主要有: 1、可决系数法。可决系数的值较大而回归系数大多不显著。...也就说当模型的可决系数R2很高,F 值也很高,每个回归参数估计值的方差很大,即t值很小,此时高度怀疑解释变量之间存在多重共线性。 2、Klein 判别法。...实际上该模型存在着多重共线性,才导致这个奇怪的结果。 下面我们就来检验一下: 其实上面的summary已经可以通过可决系数法判断,可决系数和F值都很大,但t值很小,也就是说很多回归参数不显著。
pytorch版本0.4.0 import torch from torch.autograd import Variable # train data x_...
前面 有篇博文 讲了讲Ubuntu环境下安装TensorFlow,今天来说一说在TensorFlow中如何进行线性回归。...几个问题 在迭代次数相同的情况下,调节学习率能非常有效的改变损失的下降速度,刚开始学习率是0.001,结果非常的不好,损失比现在的大0.3e09左右,一步一步加大学习率效果显著,即使现在的2也不算大(对于这个问题...),但是对于其他问题,要具体情况具体分析,这个学习率或许太过激进; 至于优化算法为什么不选用更为常见的tf.train.GradientDescentOptimize,刚开始我也是用的这个算法,结果发现...即使我减小学习率也是杯水车薪,后来试用了这个Adam(Adaptive Moment Estimation)算法,结果没有那个问题了,其实还有其他的算法,我还没有来得及一个一个试,如果想了解各种梯度下降算法...可以看到两种方法得出的结果还是差不多的(当然TF更为繁琐些)。另外在耗时上,sklearn 也要明显快于 TF, sklearn 几乎是秒出,TF 每次迭代大概需要 11 秒。
导读:在线性回归问题中,我们定义了损失函数 ,但是为什么用最小二乘(而不是三次方等)作为损失函数?...我们来尝试解决一个完整的线性回归问题: 设: 训练样本(x,y),其中x是输入特征,y是目标变量 回归方程的形式是: (1) 我们假设误差项: 服从独立同分布的高斯分布( ),即 (2) (...这里对误差项服从的分布的假设,直观地理解,就是误差在越接近0的地方出现的概率越大,越远离0的地方出现的概率越小,在0两边出现的概率对称,并且误差服从的分布总是让多次测量的均值成为对真值最好的估计。...梯度下降的过程是: Step 1 给定 的初始值,计算 ; Step 2 在 的基础上减去 在该点的梯度,得到新的 ,计算 ; Step 3 重复以上步骤,直到 取到局部最小值; Step...梯度方向是 (6) 的反方向,因此用梯度下降法迭代 的过程可以写为: (7) 观察用梯度下降法迭代 的过程,迭代效果的好坏对 初始值的选择、迭代步长 有很高的依赖,在工程上对线性回归的优化通常是基于这两点展开
[散点/点状] 8、点击[简单分布] 9、点击[定义] 10、点击[->] 11、点击[VAR00003] 12、点击[->] 13、点击[确定] 14、点击[分析] 15、点击[回归...] 16、点击[线性] 17、点击[->] 18、点击[VAR00003] 19、点击[->] 20、点击[确定]
欢迎大家订阅 回归问题 线性回归的发展可以追溯到19世纪。...1970年代:出现了岭回归和lasso回归等正则化方法,用于处理多重共线性和特征选择问题。...通过引入幂次组合,我们可以将原始特征的非线性关系纳入考虑。 具体地,我们可以将多项式回归问题转化为普通的线性回归问题。将多项式特征表示为新的特征向量 X_poly,然后使用线性回归模型进行训练。...训练模型:使用线性回归模型(如 LinearRegression)对转换后的训练集进行训练。模型会学习多项式回归方程的系数。 预测:使用训练好的模型对转换后的测试集进行预测。...比如六个点拟合(带约束)
欢迎大家订阅该文章收录专栏 [✨--- 《深入解析机器学习:从原理到应用的全面指南》 ---✨]回归问题线性回归的发展可以追溯到19世纪。...1960年代:提出了多元线性回归,允许模型包含多个自变量。1970年代:出现了岭回归和lasso回归等正则化方法,用于处理多重共线性和特征选择问题。...., wn 是多项式回归模型的系数,需要通过训练拟合得到。为了使用多项式回归拟合数据,我们可以将特征 X 转换为多项式特征。通过引入幂次组合,我们可以将原始特征的非线性关系纳入考虑。...具体地,我们可以将多项式回归问题转化为普通的线性回归问题。将多项式特征表示为新的特征向量 X_poly,然后使用线性回归模型进行训练。...训练模型:使用线性回归模型(如 LinearRegression)对转换后的训练集进行训练。模型会学习多项式回归方程的系数。预测:使用训练好的模型对转换后的测试集进行预测。
这种智能化设计有望在未来的食品包装中得到更广泛的应用。1.前言前面已经推导过线性回归和逻辑斯特回归的梯度下降算法。...线性回归的梯度下降算法:https://blog.csdn.net/qq_30232405/article/details/104153928逻辑斯特回归的梯度下降算法:https://blog.csdn.net.../qq_30232405/article/details/104486826它们各自的梯度下降算法公式为:线性回归:逻辑斯特回归:其中g为sigmoid函数2.过拟合问题及其解决方法如上图,左图展示了一个拟合曲线不能很好的拟合数据...,这个现象被称为“欠拟合问题(underfitting)”;而最右图虽然能够很好的拟合数据,但是曲线过于复杂,当需要预测新数据时,可能会有偏差,这时候被称为“过拟合问题(overfitting)”2.1...2.3 线性回归的正则化根据公式(2-2),当使用梯度下降算法更新参数\theta时,\frac{1}{2m} \sum_i^{m}(h_\theta(x^{(i)}) - y^{(i)})^2对\theta_j
p=10076 ---- 除非我们打算提出因果主张,否则我们应该像描述虚拟变量那样解释连续变量的回归系数。 一条有用建议是,以预测的方式解释回归系数 。要了解它们的含义,让我们考虑一个示例。...hsb)Coefficients:(Intercept) female ses 12.092 -2.062 2.643 现在,解释其系数的典型方法...但是要澄清语言,我们可以说: 对于拥有相同SES的学生,我们期望男性和女性之间的数学成绩相差2.06点,而男性的成绩更好。...问题出现在对的解释上ses,通常是: 保持性别不变,SES的提高与数学成绩提高2.64有关。 我们通常声称这是一个相关陈述,没有因果关系。但是,它具有因果关系。...盖尔曼和希尔的措辞解释如下: 对于相同性别的学生,我们期望在SES中有分数差异的学生之间的数学成绩有2.64分的差异。 这就是所谓的回归系数的预测解释。
本文,我们将展示几个著名的用于解决回归问题的机器学习算法,并根据它们的优缺点设定何时使用这一准则。尤其在为回归问题选择最佳机器学习算法上,本文将会为你提供一个重要的引导!...▌线性回归和多项式回归 线性回归 从简单的情况开始,单变量线性回归使用线性模型为单个输入自变量(特征变量)和输出因变量创建关系模型。...更为一般的情况是多变量线性回归,它为多个独立的输入自变量(特征变量)与输出因变量之间创建关系模型,该模型始终为线性,这是因为输出变量是输入变量的线性组合。...第三种最常见的情况是多项式回归,该模型是特征变量的非线性组合,例如:指数变量,正弦和余弦等。然而,这需要了解数据是如何与输出相关的。我们可以使用随机梯度下降(SGD)对回归模型进行训练。...随机森林是一个简单的决策树的集合,输入向量在多个决策树上运行。对于回归问题,所有决策树的输出值都是平均的;对于分类问题,使用一个投票方案来确定最终的类别。
机器学习中的线性回归 简介 线性回归是机器学习领域中最简单而有效的模型之一。它用于建立自变量(输入)和因变量(输出)之间的线性关系。在实际应用中,线性回归广泛用于预测、分析和建模。...让我们深入了解线性回归的基本原理和应用。 基本原理 线性回归基于假设,即自变量和因变量之间存在线性关系。...模型的目标是找到最适合数据的直线,使得预测值与实际值之间的差异最小化。 公司应用 许多公司在实际业务中使用线性回归来解决各种问题,例如销售预测、市场分析、资源规划等。...多变量线性回归 前面的例子是单变量线性回归,但线性回归也适用于多个自变量的情况。...它们通过在成本函数中引入正则化项,惩罚系数过大的模型,从而提高模型的泛化能力。
领取专属 10元无门槛券
手把手带您无忧上云