首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow2.0(6):利用data模块进行数据预处理

TensorFlow2.0(5):张量限幅 在整个机器学习过程中,除了训练模型外,应该就属数据预处理过程消耗的精力最多,数据预处理过程需要完成的任务包括数据读取、过滤、转换等等。...from_generator()方法接受一个可调用的生成器函数作为参数,在遍历Dataset对象时,通过通用生成器函数继续生成新的数据供训练和测试模型使用,这在大数据集合中很实用。...参数: batch_size:在单个批次中合并的此数据集的连续元素数。...对于小数据集是否使用batch关系不大,但是对于大数据集如果不分割成batch意味着将这个数据集一次性输入模型中,容易造成内存爆炸。 通过并行化提高内存的利用率。...(3)padded_batch() 功能:batch()的进阶版,可以对shape不一致的连续元素进行分批。 参数: batch_size:在单个批次中合并的此数据集的连续元素个数。

1.9K30

猿学-Tensorflow中的数据对象Dataset

基础概念 在tensorflow的官方文档是这样介绍Dataset数据对象的: Dataset可以用来表示输入管道元素集合(张量的嵌套结构)和“逻辑计划“对这些元素的转换操作。...在Dataset中元素可以是向量,元组或字典等形式。 另外,Dataset需要配合另外一个类Iterator进行使用,Iterator对象是一个迭代器,可以对Dataset中的元素进行迭代提取。...函数形式:from_tensor_slices(tensors) 参数tensors:张量的嵌套结构,每个都在第0维中具有相同的大小。...任何未知的尺寸(例如,tf.Dimension(None)在一个tf.TensorShape或-1类似张量的物体中)将被填充到每个批次中该尺寸的最大尺寸。...函数形式:skip(count) 参数count:表示应跳过以形成新数据集的此数据集的元素数。如果count大于此数据集的大小,则新数据集将不包含任何元素。如果count 为-1,则跳过整个数据集。

1.3K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第13章 使用TensorFlow加载和预处理数据

    例如,下面的代码对数据集应用了unbatch()函数(这个函数目前是试验性的,但很有可能加入到以后的版本中)。新数据集中的每个元素都是一个单整数张量,而不是批次大小为7的整数。...实现独立同分布的一个简单方法是使用shuffle()方法。它能创建一个新数据集,新数据集的前面是一个缓存,缓存中是源数据集的开头元素。...预提取 通过调用prefetch(1),创建了一个高效的数据集,总能提前一个批次。换句话说,当训练算法在一个批次上工作时,数据集已经准备好下一个批次了(从硬盘读取数据并做预处理)。...一个解决方法是根据数据样本定义(而不是整个训练集),为其它不在样本中的类型加上一些未登录词桶。训练中碰到的未知类型越多,要使用的未登录词桶就要越多。...这个例子中,使用的是2D嵌入,维度是一个可调节的超参数。因为嵌入是可以训练的,它能在训练中提高性能;当嵌入表示相似的类时,梯度下降会使相似的嵌入靠的更近,而"INLAND"会偏的更远(见图13-4)。

    3.4K10

    TensorFlow中的那些高级API

    Experiment、Estimator和DataSet框架以及它们之间的交互。 我们在本文中将使用MNIST作为数据集。这是一个使用起来很简单的数据集,可以从TensorFlow官网获取到。...Dataset(数据集)类 我们将使用Dataset类和相应的Iterator来表示数据的训练和评估,以及创建在训练过程中迭代数据的数据馈送器。...接下来,我们在from_tensor_slices的帮助下创建一个切片数据集。我们要确保该数据集可以运行无限次数,并且数据被重新洗牌并放入指定大小的批次中。...train_inputs函数返回的数据加载操作是TensorFlow的操作,该操作每次评估时都会返回一个新的批处理。.../mnist_training' 那么我们可以看到所有的训练统计数据,如训练损失、评估准确性、每个步骤的时间,以及模型图。 ?

    1.4K50

    基于神经网络——鸢尾花识别(Iris)

    前言 鸢尾花识别是学习AI入门的案例,这里和大家分享下使用Tensorflow 2框架,编写程序,获取鸢尾花数据,搭建神经网络,最后训练和识别鸢尾花。...[ ]数据中,新加一列,列标签为‘类别’,数据为y_data: ​ 整理数据为训练集,测试集 把输入特征 和 标签 做成数据对,即每一行输入特征有与之对应的类别;得出一共150行数据;其中75%作为训练集...(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db...(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db...0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 # 训练部分 for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集

    6.8K30

    python读取图像数据的一些方法

    第二件事就是根据我们的数据格式来确定数据的读取方式,以分类为例,每个文件夹下面的图像对应的为一个类别的图像的时候我们可以依次读取每个文件,并将每个文件编码成对应的0到n个类别。...如果是小数据集我们可以直接一次性读取。大数据一般按照分批次读取或者特殊的数据格式来读取。...,我们有时处理大数据的问题时就需要按照批次来读取了,这里推荐两种方法一种是基于tensorflow的tfrecords文件或者pytorch的Imagefolder两种方法:这里我们以这个数据集为例:http...# 打乱训练集,测试集 test_sampler = SubsetRandomSampler(test_idx) #============数据加载器:加载训练集,测试集======...) #在pytorch中我们经常将数据放入到GPU中我们直接打印出来数据时会报错因此,我们需要将数据放入cpu中转换成numpy数组 上述DataLoader中实际上还有很多参数,这里没有列举出来如当内存比较充足的时候可以将

    71530

    深度学习中的自动编码器:TensorFlow示例

    想象一下,你用一个男人的形象训练一个网络; 这样的网络可以产生新的面孔。 使用TensorFlow构建自动编码器 在本教程中,您将学习如何构建堆叠自动编码器以重建图像。   ...您将按以下步骤操作: 导入数据 将数据转换为黑白格式 附加所有批次 构建训练数据集 构建图像可视化工具 图像预处理 步骤1)导入数据   根据官方网站,您可以使用以下代码上传数据。...)附加所有批次   既然已经创建了两个函数并且加载了数据集,那么您可以编写一个循环来将数据附加到内存中。...马是标签数据中的第七类。如CIFAR-10数据集的文档中所述,每个类包含5000个图像。您可以打印数据的形状以确认有5000列的5000张图像。...在构建模型之前,让我们使用Tensorflow的数据集估算器来提供网络。   您将使用TensorFlow估算器构建数据集。

    73220

    解决read_data_sets (from tensorflow.contrib.learn.python.learn.dat

    解决方法要解决这个问题,我们需要使用新的方式来读取MNIST数据集并加载到我们的模型中。...通过使用​​tf.keras.datasets.mnist​​模块中的函数,我们可以轻松地加载MNIST数据集,并将其用于我们的模型训练和测试。...为了增加模型训练的随机性,我们使用​​shuffle()​​函数对训练集进行乱序处理。然后,我们使用​​batch()​​函数设置每个批次的大小。...read_data_sets​​函数是TensorFlow中的一个函数,用于加载并预处理MNIST数据集。它可以从原始数据集中自动下载数据,并返回包含训练集、验证集和测试集的对象。...read_data_sets​​函数简化了MNIST数据集的加载和预处理过程,使我们可以更加方便地使用MNIST数据集进行模型的训练和测试。

    42320

    TensorFlow 数据集和估算器介绍

    我们现在已经定义模型,接下来看一看如何使用数据集和估算器训练模型和进行预测。 数据集介绍 数据集是一种为 TensorFlow 模型创建输入管道的新方式。...', 'PetalWidth'] 在训练模型时,我们需要一个可以读取输入文件并返回特征和标签数据的函数。...然后,返回一个包含字段键和字段值的字典。map 函数将使用字典更新数据集中的每个元素(行)。 以上是数据集的简单介绍!...估算器介绍 估算器是一种高级 API,使用这种 API,您在训练 TensorFlow 模型时就不再像之前那样需要编写大量的样板文件代码。...按照与训练和评估时相同的方式使用 TextLineDataset 时,只要您的内存可以管理随机缓冲区和批次大小,您就可以处理任意大的文件。

    88890

    最新|官方发布:TensorFlow 数据集和估算器介绍

    我们现在已经定义模型,接下来看一看如何使用数据集和估算器训练模型和进行预测。 数据集介绍 数据集是一种为 TensorFlow 模型创建输入管道的新方式。...', 'PetalWidth'] 在训练模型时,我们需要一个可以读取输入文件并返回特征和标签数据的函数。...然后,返回一个包含字段键和字段值的字典。map 函数将使用字典更新数据集中的每个元素(行)。 以上是数据集的简单介绍!...估算器介绍 估算器是一种高级 API,使用这种 API,您在训练 TensorFlow 模型时就不再像之前那样需要编写大量的样板文件代码。...按照与训练和评估时相同的方式使用 TextLineDataset 时,只要您的内存可以管理随机缓冲区和批次大小,您就可以处理任意大的文件。

    83450

    译:Tensorflow实现的CNN文本分类

    这里不讨论数据预处理代码,代码可以在 Github 上获得,并执行以下操作: 从原始数据文件中加载正负向情感的句子。 使用与原始文献相同的代码清理文本数据。 将每个句子加到最大句子长度(59)。...TensorFlow始终创建一个默认Graph,但您也可以手动创建一个Graph,并将其设置为新的默认Graph,如下图所示。显式创建 Session和Graph可确保在不再需要资源时正确释放资源。...当优选设备不存在时,allow_soft_placement设置允许TensorFlow回退到具有特定操作的设备上。...3.13 TRAINING LOOP 最后,准备编写训练循环。 迭代数据的批次,调用每个批次的train_step函数,偶尔评估和检查我们的模型: ?...为了能够起作用,您需要使用300维嵌入,并用预先训练的值初始化它们。 限制最后一层权重向量的L2范数,就像原始文献一样。 您可以通过定义一个新的操作,在每次训练步骤之后更新权重值。

    1.3K50

    BigTransfer (BiT):计算机视觉领域最前沿迁移学习模型

    BiT 是一组预训练的图像模型:即便每个类只有少量样本,经迁移后也能够在新数据集上实现出色的性能。...在了解模型的详细使用方法之前,我们首先要了解如何训练此类模型,使其可有效迁移至多个任务。 上游训练 上游训练的精髓就体现在其名称,即我们可以在大数据集上有效地训练大型架构。...图 2:大型上游数据集(x 轴)和模型大小(气泡大小/颜色)对下游任务性能的影响:单独使大型数据集或模型可能会有损性能,因此二者需要同步增加 足够的预训练时间 我们还发现,在大型数据集上进行预训练时,训练时间也很重要...但当每个加速器上的图像数量过少时,BatchNorm 的性能就会变差。虽然 GroupNorm 没有这个问题,但也无法很好地扩展至整个的大型批次大小。...4) 保存微调后的模型以供日后使用 保存模型以供简化日后的操作。随后,您便可以采用与起初加载 BiT 模型时完全相同的方式,来加载已保存好的模型。

    3.5K10

    在TensorFlow 2中实现完全卷积网络(FCN)

    使用对大型图像集(如ImageNet,COCO等)进行训练的预训练模型,可以快速使这些体系结构专业化,以适合独特数据集。此过程称为迁移学习。但是有一个陷阱!...在本教程中,将执行以下步骤: 使用Keras在TensorFlow中构建完全卷积网络(FCN) 下载并拆分样本数据集 在Keras中创建生成器以加载和处理内存中的一批数据 训练具有可变批次尺寸的网络 使用...2.下载fuel(data.py) 本教程中使用的flowers数据集主要旨在了解在训练具有可变输入维度的模型时面临的挑战。...如果想使用TensorFlow数据集(TFDS),可以查看本教程,该教程说明了TFDS以及数据扩充的用法。 3.特殊化carburetor(generator.py) 想在不同的输入维度上训练模型。...累积python列表(批处理)中每个图像的度量。 使用累积的指标计算损耗和梯度。将渐变更新应用到模型。 重置指标的值并创建新的图像列表(批次)。 尝试了上述步骤,但建议不要采用上述策略。

    5.2K31

    探索 OneCode 小模型支撑平台:助力模型开发与部署的强大后盾

    可以在训练过程中,定期在验证集上评估模型的性能(如准确率、均方误差等),当验证集上的性能开始下降时,停止训练。...(三)进行训练 使用框架进行训练: 如果使用 Python 和常见的深度学习框架(如 TensorFlow、PyTorch),可以按照以下步骤进行训练: 定义模型:根据所选的模型架构(如前面选择的神经网络结构...加载数据:将划分好的训练集、验证集和测试集数据加载到模型中。在 PyTorch 中,可以使用DataLoader类来方便地加载数据,并设置批次大小、是否打乱数据等参数。...训练循环:在一个循环中进行模型的训练。在每个迭代步骤中,首先将输入数据输入到模型中得到预测输出,然后计算预测输出与真实标签之间的损失(使用前面选择的损失函数)。...验证和测试:在每个训练周期(epoch)结束后,使用验证集数据对模型进行评估,计算验证集上的损失和评估指标。根据验证集的性能,决定是否调整超参数(如学习率)或提前停止训练以防止过拟合。

    12610

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    这些模块包括: 数据:内置常用的预处理、创建批次(batching)、迭代、随机打乱方法。所有方法均采取最佳实践,并可以结合缓存与惰性加载达到高效率。...Texar-PyTorch 内置数据模块 对于常见类型的数据集,Texar-Pytorch 已经包含了可以使用的模块,如下图 2 所示。 ?...创建自定义数据集 用户可以自定义如何处理数据实例和创建批次,而 Texar 将为你处理缓存、惰性处理和迭代。下面的示例说明了这一点。 ? 代码示例 4:对输入文本执行 BPE 分词的自定义数据集。...训练器 每当开始一个新的项目时,你是否厌烦了一次又一次地编写训练和评估代码?你是否需要一个 API 来实现自动化训练,并配备日志记录、保存中间模型、可视化和超参数调优功能?...相比 Texar TensorFlow,Texar PyTorch 具有几乎相同的接口,可以轻松切换底层框架。 尽管有类似的接口,但开发者也遵循每个框架的编码风格,这样你无需学习一种新的子语言。

    68130

    AI 开源 Texar-PyTorch:卡内基梅隆大学的研究者开源的通用机器学习框架

    这些模块包括: 数据:内置常用的预处理、创建批次(batching)、迭代、随机打乱方法。所有方法均采取最佳实践,并可以结合缓存与惰性加载达到高效率。...Texar-PyTorch 内置数据模块 对于常见类型的数据集,Texar-Pytorch 已经包含了可以使用的模块,如下图 2 所示。...创建自定义数据集 用户可以自定义如何处理数据实例和创建批次,而 Texar 将为你处理缓存、惰性处理和迭代。下面的示例说明了这一点。 代码示例 4:对输入文本执行 BPE 分词的自定义数据集。...训练器 每当开始一个新的项目时,你是否厌烦了一次又一次地编写训练和评估代码?你是否需要一个 API 来实现自动化训练,并配备日志记录、保存中间模型、可视化和超参数调优功能?...相比 Texar TensorFlow,Texar PyTorch 具有几乎相同的接口,可以轻松切换底层框架。 尽管有类似的接口,但开发者也遵循每个框架的编码风格,这样你无需学习一种新的子语言。

    82020

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    这些模块包括: 数据:内置常用的预处理、创建批次(batching)、迭代、随机打乱方法。所有方法均采取最佳实践,并可以结合缓存与惰性加载达到高效率。...Texar-PyTorch 内置数据模块 对于常见类型的数据集,Texar-Pytorch 已经包含了可以使用的模块,如下图 2 所示。 ?...创建自定义数据集 用户可以自定义如何处理数据实例和创建批次,而 Texar 将为你处理缓存、惰性处理和迭代。下面的示例说明了这一点。 ? 代码示例 4:对输入文本执行 BPE 分词的自定义数据集。...训练器 每当开始一个新的项目时,你是否厌烦了一次又一次地编写训练和评估代码?你是否需要一个 API 来实现自动化训练,并配备日志记录、保存中间模型、可视化和超参数调优功能?...相比 Texar TensorFlow,Texar PyTorch 具有几乎相同的接口,可以轻松切换底层框架。 尽管有类似的接口,但开发者也遵循每个框架的编码风格,这样你无需学习一种新的子语言。

    78010

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    这些模块包括: 数据:内置常用的预处理、创建批次(batching)、迭代、随机打乱方法。所有方法均采取最佳实践,并可以结合缓存与惰性加载达到高效率。...Texar-PyTorch 内置数据模块 对于常见类型的数据集,Texar-Pytorch 已经包含了可以使用的模块,如下图 2 所示。 ?...创建自定义数据集 用户可以自定义如何处理数据实例和创建批次,而 Texar 将为你处理缓存、惰性处理和迭代。下面的示例说明了这一点。 ? 代码示例 4:对输入文本执行 BPE 分词的自定义数据集。...训练器 每当开始一个新的项目时,你是否厌烦了一次又一次地编写训练和评估代码?你是否需要一个 API 来实现自动化训练,并配备日志记录、保存中间模型、可视化和超参数调优功能?...相比 Texar TensorFlow,Texar PyTorch 具有几乎相同的接口,可以轻松切换底层框架。 尽管有类似的接口,但开发者也遵循每个框架的编码风格,这样你无需学习一种新的子语言。

    70430

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    这些模块包括: 数据:内置常用的预处理、创建批次(batching)、迭代、随机打乱方法。所有方法均采取最佳实践,并可以结合缓存与惰性加载达到高效率。...Texar-PyTorch 内置数据模块 对于常见类型的数据集,Texar-Pytorch 已经包含了可以使用的模块,如下图 2 所示。 ?...创建自定义数据集 用户可以自定义如何处理数据实例和创建批次,而 Texar 将为你处理缓存、惰性处理和迭代。下面的示例说明了这一点。 ? 代码示例 4:对输入文本执行 BPE 分词的自定义数据集。...训练器 每当开始一个新的项目时,你是否厌烦了一次又一次地编写训练和评估代码?你是否需要一个 API 来实现自动化训练,并配备日志记录、保存中间模型、可视化和超参数调优功能?...相比 Texar TensorFlow,Texar PyTorch 具有几乎相同的接口,可以轻松切换底层框架。 尽管有类似的接口,但开发者也遵循每个框架的编码风格,这样你无需学习一种新的子语言。

    46430

    如何使用TensorFlow构建神经网络来识别手写数字

    我们可以使用mnist变量来找出刚刚导入的数据集的大小。...迭代次数是指我们完成训练步骤的次数,批次大小是指我们在每个步骤中使用的训练样例数量。dropout变量代表了我们在随机elimanate一些单位的阈值。...每当网络迭代一批更多的训练图像时,它就会更新参数以减少损失,以便更准确地预测所显示的数字。测试过程包括通过训练图形运行我们的测试数据集,并跟踪正确预测的图像数量,以便我们可以计算准确度。...该过程涉及四个步骤,这些步骤重复一定次数的迭代: 通过网络传播价值 计算损失 通过网络向后传播值 更新参数 在每个训练步骤中,稍微调整参数以尝试减少下一步的损失。...这与我们之前在使用TensorFlow读取数据集时使用的表示不同,因此我们需要做一些额外的工作来匹配格式。 首先,我们使用带L参数的convert函数将4D RGBA表示减少到一个灰度颜色通道。

    1.6K104
    领券