可以通过以下几种方式实现:
腾讯云相关产品和产品介绍链接地址:
五年前,英伟达推出了DLSS技术,通过每个GeForce RTX GPU中的Tensor Core实现神经渲染来提高性能,在图形领域带来了速度更快、图像质量更高的图形处理革命。
在当今快节奏的数字世界中,网站性能在决定任何在线企业的成功方面起着至关重要的作用。
苹果公司与瑞士洛桑联邦理工学院(EPFL)联手打造了一款前沿的全能视觉模型4M-21,该模型通过跨模态的大规模协同训练,实现了在21种不同模态下的优异表现。4M-21模型的推出,标志着从传统单模态优化模型向多模态综合处理能力的重大转变。
https://blog.bitsrc.io/javascript-optimization-techniques-for-faster-website-load-times-an-in-depth-guide-cd2985194a07
北京智源人工智能研究院联合浙大、北大发布SegGPT: Segmenting Everything In Context。让我们来一探究竟。
本文提出了一个使用单一深度神经网络对图像中的目标进行检测的方法。本文的方法称为SSD,根据每个feature map位置不同的宽高比和尺度,将Bounding Box的输出离散为Bounding Box先验的集合。在预测时,网络产生置信度,认为每个先验对应感兴趣的目标,并对先验进行调整,以便更好地匹配目标的形状。此外,该网络结合了来自具有不同分辨率的多个特征图的预测,以自然地处理不同大小的目标。SSD模型相对于需要目标建议的方法(如R-CNN和MultiBox)是简单的,因为它完全抛弃了生成建议的步骤,并将所有计算封装在一个网络中。这使得SSD易于训练,并且易于集成到需要检测组件的系统中。在ILSVRC DET和PASCAL VOC数据集上的实验结果证实,SSD的性能与使用目标建议步骤的方法相当,但速度要快100-1000倍。与其他单阶段方法相比,SSD具有相似或更好的性能,为训练和推理提供了统一的框架。
探讨了超分辨率技术在卫星图像中的应用,以及这些技术对目标检测算法性能的影响。具体来说,我们提高了卫星图像的固有分辨率,并测试我们能否以比固有分辨率更高的精度识别各种类型的车辆、飞机和船只。使用非常深的超分辨率(VDSR)框架和自定义随机森林超分辨率(RFSR)框架,我们生成了2×、4×和8×的增强级别,超过5个不同的分辨率,范围从30厘米到4.8米不等。使用本地和超解析数据,然后使用SIMRDWN对象检测框架训练几个定制的检测模型。SIMRDWN将许多流行的目标检测算法(如SSD、YOLO)组合成一个统一的框架,用于快速检测大型卫星图像中的目标。这种方法允许我们量化超分辨率技术对跨多个类和分辨率的对象检测性能的影响。我们还量化了目标检测的性能作为一个函数的本机分辨率和目标像素大小。对于我们的测试集,我们注意到性能从30 cm分辨率下的平均精度(mAP) = 0.53下降到4.8 m分辨率下的mAP = 0.11。从30厘米图像到15厘米图像的超级分辨效果最好;mAP改进了13 - 36%。对于较粗的分辨率而言,超级分辨率的好处要小一些,但仍然可以在性能上提供小的改进。
基于图像的预测方法能够如何准确地响应云游戏系统中的用户操作?主要面临三个技术挑战:
图像分割是计算机视觉和机器学习领域发展最快的领域之一,包括分类、分类与定位、目标检测、语义分割、实例分割和Panoptic分割。
非最大抑制是目标检测流程的重要组成部分。首先,它根据所有检测框的得分对它们进行排序。选择得分最大的检测框M,抑制与M有显著重叠(使用预定义阈值)的所有其他检测框。这个过程递归地应用于其余的框。按照算法的设计,如果一个目标重叠在预定义的阈值,就丢弃它。为此,我们提出Soft-NMS,衰变的算法检测的所有其他目标作为一个连续函数的重叠与m。因此,没有目标在这一过程中消除。Soft-NMS获得一致的改善coco-stylemAP指标,在标准数据集PASCAL VOC 2007 (RFCN 和Faster-RCNN上为) MS-COCO (R-FCN上1.3% 和Faster-RCNN上为 .1%) 没有过改变任何额外的hyper-parameters。NMS算法使用Deformable R-FCN,Sost-NMS在单一模型下将目标检测的最新水平从39.8%提高到40.9%。此外,Soft-NMS和传统的NMS计算复杂度很接近,因此能够有效实现。由于Soft-NMS不需要任何额外的训练,而且易于实现,因此可以轻松地集成到任何目标检流程中。
我们知道,人工智能领域虽然发展迅速,但大部分机器学习的系统都是针对特定的学习任务存在的,例如会下棋的AlphaGo,识别人脸的图像识别模型,识别语音语义的智能语音助手等等。这些机器学习的系统都只面向特定的任务,目前很少有模型能真正突破狭义机器学习的限制,有能力学习多种不同领域任务。 近日 AI 科技评论了解到,谷歌在博客上发表了文章,提出了自己研发的新机器学习系统MultiModel,一个有能力处理多个任务的机器学习模型。这一模型由多伦多大学计算机科学机器学习小组研究员ÅukaszKaiser,Google
作者:lberto Hojel ; Yutong Bai ; Trevor Darrell ; Amir Globerson ; Amir Bar
训练好的模型,用自己蒸馏一下,就能提高性能,是不是很神奇,这里面的原理到底是什么呢,这要从模型集成开始说起。
当前的大模型,尽管能够生成类似人类的文本和在特定任务中表现优异,但在真正理解上下文和语义方面仍存在局限。例如,GPT-3等模型可以生成流畅的文章,但在遇到复杂逻辑推理或多步骤推理时,容易出现错误。这说明,模型在语义理解和逻辑推理方面的能力还有待提升。
在本文中,我将讨论一种新的半监督,多任务医学成像方法,称为Multimix,Ayana Haque(ME),Abdullah-Al-Zubaer Imran,Adam Wang、Demetri Terzopoulos。该论文在被ISBI 2021收录,并于4月的会议上发表。
首先,NSImage提供了支持多种格式图像数据进行管理的api, 但是NSImage对被其管理的实际图像数据几乎是一无所知的,这是因为NSImage并没有直接与实际图像数据打交道,而是间接的通过一个或多个由 NSImageRep类派生的对象来维护管理图像数据. 这时的NSImage看起来就像是一个聪明的领导,它带领几个得力的助手(NSImageRep),指挥这些助手完成图像数据的管理工作.
数据质量:数据应该是准确,完整,无误,且具有代表性。如果数据集有错误或缺失,将会影响模型的性能,选择分辨率越高肯定对模型是越好的,但是也要考虑到模型训练占用的内存够不够,因为分辨率越高,数据量就越大
【导读】前几天,深度学习工程师George Seif发表了一篇博文,总结了7个深度学习的技巧,主要从提高深度学习模型的准确性和速度两个角度来分析这些小技巧。在使用深度学习的时候,我们不能仅仅把它看成一
来源:DeepHub IMBA本文约4000字,建议阅读10+分钟本文与你讨论一种新的半监督,多任务医学成像方法。 在本文中,我将讨论一种新的半监督,多任务医学成像方法,称为Multimix,Ayana Haque(ME),Abdullah-Al-Zubaer Imran,Adam Wang、Demetri Terzopoulos。该论文被ISBI 2021收录,并于4月的会议上发表。 MultiMix通过采用基于置信的增强策略和新型桥模块来执行联合半监督分类和分割,该模块还为多任务提供了可解释性。在完全监
在这项工作中,我们研究了卷积网络深度对其在大规模图像识别设置中的准确性的影响。我们的主要贡献是使用一个非常小的(3×3)卷积滤波器的架构对增加深度的网络进行了全面的评估,这表明通过将深度提升到16-19个权重层,可以显著改善先前的配置。这些发现是我们提交的ImageNet挑战赛的基础,我们的团队在定位和分类方面分别获得了第一名和第二名。我们还表明,我们的表现可以很好地推广到其他数据集,在这些数据集上,他们可以获得最先进的结果。我们已经公开了两个性能最好的ConvNet模型,以便进一步研究如何在计算机视觉中使用深度视觉表示。
图像修复(image restoration)是一个受到长期关注和研究的最基础的CV问题,它能够从低质量的图像,例如缩略图、有噪音的图或是压缩图像中恢复为原始高质量图像。
大规模视觉 Transformer (ViT)模型已经在广泛的下游视觉任务中展示出强大的泛化能力。将这些模型适配到特定任务的普遍方法是遵循先预训练后微调的范式,模型最初在大规模数据集上进行预训练,然后针对每个下游任务进行微调。然而,随着这些预训练的ViT模型规模的不断扩大[57; 7],完全微调它们变得计算上更加密集。此外,在有限的下游数据集上进行微调时,还存在灾难性遗忘和过拟合的风险。
所以作者认为在训练设置中,单标签注释和有效的多标签图像之间的不匹配是同样的问题。使用单标签注释,图像的随机裁剪可能包含与真值完全不同的目标,在训练过程中引入噪声甚至不正确的监督。因此,作者用多标签重新标记ImageNet训练集。
尽管基于深度学习的方法在语义分割方面取得了显著的成就,但这些方法常常需要大量的逐像素标注数据。
今天要介绍的是NaViT,这是一种适用于任何长宽比以及分辨率的Transformer模型。
将它扩展到多个图像分类以及自然语言处理任务中,也能提高模型的分布外性能,并改善新下游任务的零样本性能。
在PHP的图像处理中,复制图像是一个非常常见的操作。不仅可以用于缩略图的生成,还可以用于其他方面的图像处理。本文将教你如何使用PHPGD库来复制图像,以及如何优化复制过程以提高性能和图像质量。
来源:机器学习AI算法工程本文约4800字,建议阅读10+分钟本文将会详细介绍深度学习模型的训练流程。 深度学习在近年来得到了广泛的应用,从图像识别、语音识别到自然语言处理等领域都有了卓越的表现。但是,要训练出一个高效准确的深度学习模型并不容易。不仅需要有高质量的数据、合适的模型和足够的计算资源,还需要根据任务和数据的特点进行合理的超参数调整、数据增强和模型微调。在本文中,我们将会详细介绍深度学习模型的训练流程,探讨超参数设置、数据增强技巧以及模型微调等方面的问题,帮助读者更好地训练出高效准确的深度学习模型
最近,华中科技大学和金山的研究人员在多模态大模型 Monkey [1](Li et al., CVPR2024)工作的基础上提出 TextMonkey。在多个场景文本和文档的测试基准中,TextMonkey 处于国际领先地位,有潜力带来办公自动化、智慧教育、智慧金融等行业应用领域的技术变革。
如图1所示,还为具有较低计算能力的边缘计算设备设计了参数较少的轻量化模型,这也显示了更好的性能。 github:https://github.com/LSH9832/edgeyolo
在开发机器学习系统时,提高模型在下游任务上的表现或减少在预训练中学习到的偏见,一种常见的方法是对预训练模型做人为干预引导。为此,本文提出了一种以任务向量为中心来引导神经网络产生预期结果的新范式。
多模态学习结合了多种数据模式,拓宽了模型可以利用的数据的类型和复杂性:例如,从纯文本到图像映射对。大多数多模态学习算法专注于建模来自两种模式的简单的一对一数据对,如图像-标题对,或音频文本对。然而,在大多数现实世界中,不同模式的实体以更复杂和多方面的方式相互作用,超越了一对一的映射。论文建议将这些复杂的关系表示为图,允许论文捕获任意数量模式的数据,并使用模式之间的复杂关系,这些关系可以在不同样本之间灵活变化。为了实现这一目标,论文提出了多模态图学习(MMGL),这是一个通用而又系统的、系统的框架,用于从多个具有关系结构的多模态邻域中捕获信息。特别是,论文关注用于生成任务的MMGL,建立在预先训练的语言模型(LMs)的基础上,旨在通过多模态邻域上下文来增强它们的文本生成。
在现代计算机系统中,程序的并发性已经变得越来越重要。多线程编程是一种利用计算机的多核处理器来提高程序性能的方法。C++是一种功能强大的编程语言,提供了丰富的多线程编程支持。本文将介绍如何利用C++多线程编程来提高程序的并发性。
本节讨论一些关键方法的性能,下面将介绍各种性能标准和度量,并讨论和比较一些关键方法的性能。
众所周知,人类可以从几个有限的图像样本中有效地学习和识别物体。然而,对于现有的主流深度神经网络来说,仅从少数图像中学习仍然是一个巨大的挑战。受人类思维中类比推理的启发,一种可行的策略是“翻译”丰富的源域的丰富图像,以用不足的图像数据丰富相关但不同的目标域。为了实现这一目标,我们提出了一种新的、有效的基于部分全局学习的多对抗性框架(MA),该框架实现了一次跨域图像到图像的翻译。具体而言,我们首先设计了一个部分全局对抗性训练方案,为特征提取提供了一种有效的方法,并防止鉴别器被过度拟合。然后,采用多对抗机制来增强图像到图像的翻译能力,以挖掘高级语义表示。此外,还提出了一种平衡对抗性损失函数,旨在平衡训练数据,稳定训练过程。大量实验表明,所提出的方法可以在两个极不平衡的图像域之间的各种数据集上获得令人印象深刻的结果,并且在一次图像到图像的转换上优于最先进的方法。
在构建一个C++大型流媒体项目,特别是针对千万级直播系统,我们需要考虑从底层到应用层的多个方面。首先,基于应用层组播的技术是一个关键因素,因为它不需要网络层设备的支持,适合用于流媒体服务。这种方法可以显著提高系统的用户数量并保持较好的服务质量。此外,采用双层架构和整体分层、局部集中的思想来构造转发树,可以保证系统在大规模用户环境下的良好可扩展性。
不同行业采用人工智能的速度取决于最大化数据科学家的生产力。NVIDIA每个月都会发布优化的NGC容器,为深度学习框架和库提供更好的性能,帮助科学家最大限度地发挥他们的潜力。英伟达持续投资于完整的数据科学栈,包括GPU架构、系统和软件栈。这种整体的方法为深度学习模型培训提供了最好的性能,NVIDIA赢得了提交给MLPerf的所有六个基准测试,这是第一个全行业的AI基准测试。NVIDIA在最近几年引入了几代新的GPU架构,最终在Volta和图灵GPU上实现了张量核心架构,其中包括对混合精度计算的本机支持。NVIDIA在MXNet和PyTorch框架上完成了这些记录,展示了NVIDIA 平台的多功能性。
在Android应用程序中,自定义View是一个非常常见的需求。自定义View可以帮助您创建独特的UI元素,以满足您的应用程序的特定需求。然而,自定义View也可能会导致性能问题,特别是在您的应用程序需要处理大量自定义View的情况下。
我们提出了一种用于任务无关图像翻译的ForkGAN,它可以在恶劣的天气条件下增强多个视觉任务。评估了图像定位/检索、语义图像分割和目标检测三项任务。关键的挑战是在没有任何明确监督或任务意识的情况下实现高质量的图像翻译。我们的创新是一种具有一个编码器和两个解码器的叉形生成器,可以解开域特定信息和域不变信息的纠缠。我们强制天气条件之间的循环转换通过公共编码空间,并确保编码特征不显示有关域的信息。实验结果表明,我们的算法产生了最先进的图像合成结果,并提高了三视觉任务在恶劣天气下的性能。
在计算机科学中,程序运行效率是一个重要的考量因素。针对需要处理大量数据或复杂计算任务的程序,使用并行计算技术可以大幅度加速程序的运行速度。C++作为一种高性能的编程语言,提供了多种并行计算的工具和技术,可以帮助开发人员充分利用计算资源,提高程序的性能。
机器之心报道 编辑:陈萍、小舟 在卷积神经网络和 ViT 竞争计算机视觉领域霸主时,谷歌:我取二者所长,提出一种两全其美的方法。 自从 2012 年 AlexNet 问世以来,卷积神经网络一直是计算机视觉的主要机器学习架构。最近,受自然语言处理启发,注意力机制已逐渐纳入视觉模型。这些注意力方法增强了输入数据的某些部分,同时最小化了其他部分,以便网络可以专注于数据最重要的部分。 视觉 Transformer (ViT) 为计算机视觉模型设计创造了一个完全没有卷积的全新领域。ViT 将多个图像 patch 视为
Qt支持任何标准图像格式,包括PNG和JPEG等位图格式,以及SVG等矢量图形格式。与位图图像相比,渲染SVG图像很慢。
在这场比赛中,作者采用了一种模型融合方法来实现接近真实图像的目标检测结果。 作者的方法基于CO-DETR模型,该模型在两组数据上进行训练:一组包含在暗条件下的图像,另一组包含用低光照条件增强的图像。 作者对测试数据使用了各种增强技术来生成多组预测结果。最后,作者应用了由IoU阈值引导的聚类聚合方法来选择最优结果。
大语言模型中的进展激发了人们对计算机视觉基础模型开发的极大关注。其中,Segment Anything Model(SAM)是一种专门为图像分割任务和后续下游应用设计的新型交互式模型。
大型图像文本基础模型,如CLIP,在零样本性能上表现出优异的表现,并在各种下游任务上提高了鲁棒性。然而,由于这些模型的大小和延迟,在移动设备上部署它们具有挑战性。作者的目标是设计一个新的对齐图像文本编码器家族,使其适合移动设备。实现这一目标的主要挑战有两个:
图像拼接是一种很厉害的算法,它可以把多个小图像拼接成一个超大的图像。在文档管理系统里,图像拼接技术可以把好几个文档或图像片段合并在一起,形成更大、更全面的文档视图。这对于处理那些大型文档或者复杂的扫描文档来说特别有帮助。
丰色 发自 凹非寺 量子位 | 公众号 QbitAI 如何最大限度地提升模型精度? 最近,谷歌等机构发现: 性能不好的微调模型先不要扔,求一下平均权重! 就能在不增加推理时间以及内存开销的情况下,提高模型的准确性和鲁棒性。 比如,研究人员就使用该方法创造了ImageNet1K的新纪录:90.94%。 将它扩展到多个图像分类以及自然语言处理任务中,也能提高模型的分布外性能,并改善新下游任务的零样本性能。 而这个方法还有一个有趣的名字,叫Module soup—— 是不是让人一下子就让人联想到了斐波那契汤的
摘要:最近,GPT-4V 等视觉语言模型(VLM)在各种视觉语言任务中取得了令人难以置信的进步。我们深入研究了基于视觉的演绎推理这一更为复杂但探索较少的领域,并发现了当前 SOTA 视觉语言模型中尚未暴露的盲点。具体来说,我们利用Raven's Progressive Matrices(RPM)来评估 VLM 仅依靠视觉线索进行多跳multi-hop关系和演绎推理的能力。我们在三个不同的数据集(包括 Mensa IQ 测试、IntelligenceTest 和 RAVEN)上对几种流行的 VLM 进行了全面评估,这些 VLM 采用了标准策略,如上下文学习、自我一致性(SC)和思维链(CoT)。结果表明,尽管 LLM 在文本推理方面的能力令人印象深刻,但我们在视觉演绎推理方面仍远未达到可比的熟练程度。我们发现,某些在 LLMs 中有效的标准策略并不能完美地应对视觉推理任务带来的挑战。此外,详细的分析表明,VLMs 在解决这些任务时之所以举步维艰,主要是因为他们无法感知和理解 RPM 示例中多种混淆的抽象模式。
领取专属 10元无门槛券
手把手带您无忧上云