首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

形状'[-1,2,4,28]‘对于大小为768的输入无效

对于给定的形状'[-1, 2, 4, 28]',它表示一个四维张量,其中第一个维度的大小为-1,第二个维度的大小为2,第三个维度的大小为4,第四个维度的大小为28。这种形状对于大小为768的输入是无效的。

在深度学习中,输入数据的形状对于模型的训练和推理非常重要。形状定义了张量的维度和大小,它决定了数据在网络中的流动方式和计算过程中的维度匹配。在给定的形状中,-1表示该维度的大小将根据其他维度的大小和总元素数来自动计算。

对于给定的形状'[-1, 2, 4, 28]',我们无法确定第一个维度的大小,因为它被设置为-1。在这种情况下,我们需要根据输入数据的大小和其他维度的大小来计算第一个维度的大小。然而,由于没有提供输入数据的大小,我们无法计算出第一个维度的大小。

对于大小为768的输入,我们需要根据具体情况来确定正确的形状。如果我们知道输入数据的维度和大小,我们可以根据需要调整形状。例如,如果输入数据是一个一维向量,我们可以将形状设置为[768];如果输入数据是一个二维矩阵,我们可以将形状设置为[32, 24]等等。

总之,对于给定的形状'[-1, 2, 4, 28]',它对于大小为768的输入是无效的,因为我们无法确定第一个维度的大小。我们需要根据具体情况来确定正确的形状,并根据需要调整形状以适应输入数据的维度和大小。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

清华 & 阿里 开源 ConvLLaVA | 替代 Vision Transformer,解决图像处理中 Token 过多问题!

大型多模态模型近年来取得了显著进展,在包括图像和视频理解、数字代理开发[53]和机器人技术[24]在内的多个领域表现出卓越性能。要理解和处理广泛任务和复杂场景的必要性凸显了视觉编码器的重要性,而视觉编码器主要是指Vision Transformer。然而,ViT的二次空间复杂性和过多的视觉标记输出限制了其在多样和高分辨率任务中的应用。过多的视觉标记导致大型语言模型的计算负担大幅增加,远远超过了视觉编码器中二次空间复杂度引起的计算成本。这种视觉标记的冗余不仅牺牲了效率,还阻碍了视觉信息的有效提取[31;11]。尽管提出了一系列方法(表1;[31;27;49])来修正ViT的二次空间复杂度,但它们未能解决视觉标记冗余的关键问题[5;28]。

01

Google BERT 中文应用之春节对对联

在网上看到有人用 seq2seq 训练一个对对联的机器人,很好奇能不能用Google的BERT预训练模型微调,训练出一个不仅可以对传统对子,也可以对新词新句的泛化能力更好的对对联高手。今天大年初一,这样的例子刚好应景。在Google公开的BERT源代码中,附带两个微调的例子,一个是阅读理解,run_squad.py, 另一个是双句或单句分类, run_classifier.py ,并没有命名实体识别或者是 seq2seq 的例子。这次实验我会深度修改 Google BERT 在预训练数据上的微调模型,使得输出是与输入等长的序列。即上联中的每个字都会对应下联中相同位置的一个字,此任务比seq2seq简单,不需要将上联映射到潜在空间的一个向量后使用解码器产生非等长序列。既然 BERT 对输入的每一个 token 都产生了一个潜在空间的 768 维的向量,我们只需要再加一层,将每个token的768维向量变换成字典空间的 N (N=21128)维向量即可。

02

Google BERT 中文应用之春节对对联

在网上看到有人用 seq2seq 训练一个对对联的机器人,很好奇能不能用Google的BERT预训练模型微调,训练出一个不仅可以对传统对子,也可以对新词新句的泛化能力更好的对对联高手。今天大年初一,这样的例子刚好应景。在Google公开的BERT源代码中,附带两个微调的例子,一个是阅读理解,run_squad.py, 另一个是双句或单句分类, run_classifier.py ,并没有命名实体识别或者是 seq2seq 的例子。这次实验我会深度修改 Google BERT 在预训练数据上的微调模型,使得输出是与输入等长的序列。即上联中的每个字都会对应下联中相同位置的一个字,此任务比seq2seq简单,不需要将上联映射到潜在空间的一个向量后使用解码器产生非等长序列。既然 BERT 对输入的每一个 token 都产生了一个潜在空间的 768 维的向量,我们只需要再加一层,将每个token的768维向量变换成字典空间的 N (N=21128)维向量即可。

02
领券