图像文字作为信息传递的重要载体,图像文字识别对于高效化办公,场景理解等有着重要的意义。
本文介绍了证件识别技术的起源、发展和应用前景。随着互联网和智能手机的普及,证件识别的需求也日益增加。本文主要从证件识别技术的起源、发展、实现方式、技术挑战和前景展望等方面进行了详细的阐述和分析。证件识别技术的应用范围广泛,包括金融、医疗、物流等行业,在医疗行业,可以用于电子病历的识别和医疗票据的识别;在物流行业,可以用于快递单据的识别和追踪等。证件识别技术的应用前景非常广阔,但同时也面临着一些技术挑战,如识别准确率、效率、适应性等方面的问题。
本文介绍了腾讯数平精准推荐团队的OCR识别算法,包括识别算法的演进之路以及4个代表性方法。
在过去的数年中,腾讯数平精准推荐(Tencent-DPPR)团队一直致力于实时精准推荐、海量大数据分析及挖掘等领域的技术研发与落地。特别是在广告推荐领域,团队自研的基于深度在线点击率预估算法及全流程实时推荐系统,持续多年在该领域取得显著成绩。而在用户意图和广告理解上,借助于广告图片中的文本识别以及物体识别等技术手段,可以更加有效的加深对广告创意、用户偏好等方面的理解,从而更好的服务于广告推荐业务。 OCR(Optical Character Recognition, 光学字符识别)是指对输入图像进行分析识
前言:现今最主流的处理图像数据的技术当属深度神经网络了,尤其是卷积神经网络CNN尤为出名。本文将通过讲解CNN的介绍以及使用keras搭建CNN常用模型LeNet-5实现对MNist数据集分类,从而使得读者更好的理解CNN。 1.CNN的介绍 CNN是一种自动化提取特征的机器学习模型。首先我们介绍CNN所用到一些基本结构单元: 1.1卷积层:在卷积层中,有一个重要的概念:权值共享。我们通过卷积核与输入进行卷积运算。通过下图可以理解如何进行卷积运算。卷积核从左到右对输入进行扫描,每次滑动1格(步长为1),
传统的方法将文字检测和文字识别分为两个分开的部分,即输入一张图,先进行文字检测,检测出文字的位置,再进行文字识别,即对检测出的文字抠出来并送入识别网络。这样一方面比较费时间,第二没有共享检测和识别的特征。
同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 使用:pip install nlpcda https://github.com/425776024/nlpcda 介绍 一键中文数据增强工具,支持: 1.随机实体替换 2.近义词 3.近义近音字替换 4.随机字删除(内部细节:数字时间日期片段,内容不会删) 5.NER类 BIO 数据增强 6.随机置换邻近的字:研表究明,汉字序顺并不定一影响文字的阅读理解<<是乱序的 7.中文等价字替换(1 一 壹 ①,2 二 贰 ②)
中文拼写检查任务是中文自然语言处理中非常具有代表性和挑战性的任务,其本质是找出文本段落中的错别字。这项任务在各种领域,如公文,新闻、财报中都有很好的落地应用价值。而其任务的困难程度也赋予了它非常大的研究空间。达观数据在CCL2022汉语学习者文本纠错评测比赛的赛道一中文拼写检查(Chinese Spelling Check)任务中取得了全国冠军,赛道二中文语法纠错(Chinese Grammatical Error Diagnosis)任务中获得了亚军。本文基于赛道一中文拼写检查任务的内容,对比赛过程中采用的一些方法进行分享,并介绍比赛采用的技术方案在达观智能校对系统中的应用和落地。赛道二中文语法纠错的获奖方案已经分享在达观数据官方公众号中。
机器之心报道 机器之心编辑部 在 OCR 识别领域最权威的会议之一 ICDAR(国际文档分析与识别会议)上,360 数科在 ICDAR2019- SROIE 榜单上斩获第一。 榜单地址:https
VOC数据集是目标检测经常用的一个数据集,自2005年起每年举办一次比赛,最开始只有4类,到2007年扩充为20个类,共有两个常用的版本:2007和2012。学术界常用的5k的train/val 2007和 16k 的train/val 2012作为训练集,test 2007 作为测试集,用10k 的train/val 2007+test 2007和 16k的train/val 2012作为训练集,test2012作为测试集,分别汇报结果。
作者:poetniu,腾讯 WXG 应用研究员 微信(WeChat)作为 12 亿+用户交流的平台,覆盖全球各个地区、不同语言的用户,而微信翻译作为桥梁为用户间的跨语言信息交流提供了便利。目前微信翻译每天为千万用户提供数亿次的翻译服务,且团队技术持续钻研,累计发表数十篇顶会论文、夺得多项 WMT 冠军。随着翻译质量的提升,微信翻译的应用形态从文本逐步扩展到图片、语音、网页、文档、视频等众多场景。本文以微信图片翻译为例介绍近一年的技术优化。 文章术语 ViT:Vision Transformer NLP
本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。
在很多中文NLP相关的落地场景都会涉及到文本纠错的相关技术,例如跟各种形式机器人的语音或者文字对话,或者用手机扫描相关的PDF或者图片,或者跟人聊天时用输入法打字等等,无论是通过ASR识别的语音信息,通过OCR识别得到的图片信息,还是用户真实通过输入法的文字,都有可能出现错误。这些错误会影响文本的可读性,不利于人和机器的理解,如果这些错误不加处理,会传播到后续的环节,影响后续任务的效果。常见的中文错误类型包括以下几种:
随着行业的发展和技术的成熟,文字识别(OCR)目前已经应用到了多个行业中,比如物流行业快递包裹的分拣,金融行业的支票单据识别输入,交通领域中的车牌识别,以及日常生活中的卡证、票据识别等等。OCR(文字识别)技术是目前常用的一种AI能力。但一般OCR的识别结果是一种按行输出的半结构化输出。
大家好,我是木禾,第一次给信安之路投稿哈,因为中午刚好看到有关于 pydictor 的文章,咦,有用过。几个月前也在烦生成密码的问题,当时认真看过 pydictor 的代码,做了一些改进,因为这个生成工具没有办法实现的一个点:
近年来,移动互联、大数据等新技术飞速发展,倒逼传统行业向智能化、移动化的方向转型。随着运营集约化、数字化的逐渐铺开,尤其是以OCR识别、数据挖掘等为代表的人工智能技术逐渐深入业务场景,为用户带来持续的经济效益和品牌效应。图书情报领域作为提升公共服务的一个窗口,面临着新技术带来的冲击,必须加强管理创新,积极打造智能化的图书情报服务平台,满足读者的个性化需求。无论是高校图书馆还是公共图书馆,都需加强人工智能基础能力的建设,并与图书馆内部的信息化系统打通,优化图书馆传统的服务模式,提升读者的借阅体验。
本文则针对中文拼写纠错进行一个简要的概述,主要分享基于n-gram语言模型和困惑集来做中文拼写纠错的方法。
2017年华中科技大学在发表的论文《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》提出了一个识别文本的方法,这种方法就是CRNN。该模型主要用于解决基于图像的序列识别问题,特别是场景文本识别问题。
光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。亦即将图像中的文字进行识别,并以文本的形式返回。
近年来,卷积神经网络(CNN)以其局部权值共享的特殊结构在语音识别和图像处理等方面得到了快速发展,特别是大型图像处理方面,更是表现出色,逐渐成为了行业内一个重要的技术选择。 不过,好用并不代表万能。这里 AI 科技评论从一个卫星图像分析的具体实例出发,介绍了CNN建模和本地拉普拉斯滤波这两种分析技术的效果对比,最终我们发现,本地拉普拉斯滤波的效果反而更好。 卷积神经网络 为了从卫星图像中分析和评估一项自然灾害造成的损失,首先需要得到相关地理区域实时的高分辨率的卫星图像,这是进行后续所有分析的数据基础。目
中文文本纠错是针对中文文本拼写错误进行检测与纠正的一项工作,中文的文本纠错,应用场景很多,诸如输入法纠错、输入预测、ASR 后纠错等等,例如:
我们需要从任何图像(包含文本)检测文本区域,这个图像可以是任何具有不同背景的东西。在检测到图像后,我们也必须识别它。
OCR(Optical Character Recognition,光学字符识别)是指对图像进行分析识别处理,获取文字和版面信息的过程,是典型的计算机视觉任务,通常由文本检测和文本识别两个子任务构成。
前两章我们分别介绍了NER的基线模型Bert-Bilstm-crf, 以及多任务和对抗学习在解决词边界和跨领域迁移的解决方案。这一章我们就词汇增强这个中文NER的核心问题之一来看看都有哪些解决方案。以下预测结果和代码详见Github-DSXiangLi/ChineseNER
白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模糊字、形似字、残缺字、光影遮蔽、多语言混合文本等应用落地面临的技术难题还没被彻底解决。
来源:汉斯出版社本文约3400字,建议阅读5分钟总结梳理了知乎上“引用次数在15000次以上的都是什么论文?”这一问题的经典回答。 前言 小编在这里总结梳理了知乎上“引用次数在15000次以上的都是什么论文?”这一问题的经典回答,希望能帮助到各位进一步了解领域内的相关进展,并且通过阅读这些经典论文或许也会给您带来不少启发。 1. 机器学习领域 我来列举一些机器学习(Machine Learning)领域的高被引文章。 机器学习领域泰斗级学者Geoffrey Hinton的文章引用: 引用次数超过150
转载请附:博文网址: urlteam ,github 网址:tensorflow_cnn
文本挖掘任务大致分为四个类型:类别到序列、序列到类别、同步的(每个输入位置都要产生输出)序列到序列、异步的序列到序列。
新媒体管家 自然语言处理(NLP)一直是人工智能领域的重要话题,而人类语言的复杂性也给NLP布下了重重困难等待解决。随着深度学习(Deep Learning)的热潮来临,有许多新方法来到了NLP领域,给相关任务带来了更多优秀成果,也给大家带来了更多应用和想象的空间。 近期,达观数据文本挖掘组负责人张健应邀在雷锋网AI研习社分享了一些NLP方面的知识和案例。 1 达观文本挖掘系统整体方案 达观文本挖掘系统整体方案包含了NLP处理的各个环节,从处理的文本粒度上来分,可以分为篇章级应用、短串级应用和词汇级应用
论文链接:https://crgjournals.com/robotics-and-mechanical-engineering/articles/pallet-localization-techniques-of-forklift-robot-a-review-of-recent-progress
在过去的几年中,基于RGB的深度学习已经在目标分类与语义分割方面取得了非常好的效果,也促进了很多技术的发展,深度学习在现实生活中的应用也越来越多。但是在很多实际应用中,例如自动驾驶中,只使用RGB信息是远远不够的,因为我们不仅仅想要知道周围有什么物体,还想要知道物体具体的三维信息(位置,运动状态等),因此,三维方面的深度学习也逐渐发展了起来并取得了不错的效果。
内容来源:2017 年 9 月 24 日,爱因互动技术合伙人吴金龙在“ArchData技术峰会北京站”进行《深度学习与智能对话机器人》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。 阅读字数:2390 | 6分钟阅读 摘要 本次主题将介绍深度学习与对话机器人的结合,通过对不同的对话机器人技术分析,来解析对话机器人的发展趋势以及适用场景。 嘉宾演讲视频及PPT回顾:http://suo.im/4rwwLi 对话机器人简史 最早期人工智能的提出是在190
Vision Transformer成功的原因被认为是由于Self-Attention建模远程依赖的能力。然而,Self-Attention对于Transformer执行视觉任务的有效性有多重要还不清楚。事实上,只基于多层感知器(MLPs)的MLP-Mixer被提议作为ViTs的一个有吸引力的替代方案。
来源:机器之心 本文约2400字,建议阅读5分钟 来自阿姆斯特丹自由大学、阿姆斯特丹大学、斯坦福大学的研究者提出了 CCNN。 在 VGG、U-Net、TCN 网络中... CNN 虽然功能强大,但必须针对特定问题、数据类型、长度和分辨率进行定制,才能发挥其作用。我们不禁会问,可以设计出一个在所有这些网络中都运行良好的单一 CNN 吗? 本文中,来自阿姆斯特丹自由大学、阿姆斯特丹大学、斯坦福大学的研究者提出了 CCNN,单个 CNN 就能够在多个数据集(例如 LRA)上实现 SOTA ! 1998 年 L
0629封面.jpg 番外 青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么? 白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模
近几年来,随着一些技术的出现(在人脸识别方面取得了一系列进展),甚至超过了人脸验证性能(如:C. Lu and X. Tang, “Surpassing human-level face verification performance on LFW with GaussianFace,” in AAAI, 2015)。
本文介绍了语音识别技术中的端到端模型、基于CTC的序列模型、基于序列学习的注意力机制模型、基于3D卷积神经网络的语音识别系统等。其中,端到端模型可以直接从原始音频数据中学习到针对语音识别的抽象表示,具有较好的可扩展性和鲁棒性;而基于CTC的序列模型则通过连接主义学习的方法,将CTC定义的序列映射问题转化为神经网络中的参数优化问题,进一步提高了语音识别的准确率;基于序列学习的注意力机制模型则借鉴了语言学中的注意力机制,通过对输入序列进行加权处理,进一步提高了模型的识别准确率;基于3D卷积神经网络的语音识别系统则利用3D卷积核对输入序列进行卷积处理,提取出序列中的特征信息,进一步提高了模型的识别准确率。
CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比。
随着深度学习的快速发展,图像分类、目标检测、语义分割以及实例分割都取得了突破性的进展,这些方法成为自然场景文本检测的基础。基于深度学习的自然场景文本检测方法在检测精度和泛化性能上远优于传统方法,逐渐成为了主流。图1 列举了文本检测方法近几年来的发展历程。
CVPR引领计算机视觉领域的顶尖人才,每年都有很多非常令人印象深刻的论文。对CVPR中的论文进行了分析,以了解研究的主要领域和纸质标题中的常用关键词。这可以表明研究的进展。
PS:Amusi前几天在忙其它事,论文速递耽搁了近一个星期,还请大家见谅。因为时间因素,和往常一样,每篇paper不附带相应的图示。如果本文中出现明显重大的翻译问题,还请大家指出,谢谢
王新民 编译 量子位 出品 | 公众号 QbitAI 最近,Kaggle网站举办了一场在卫星图像上进行场景特征检测的比赛,数据集由英国国防科学与技术实验室(DSTL)提供。 以色列团队deepsense.io在419支参赛队伍中获得了第四名的成绩。deepsense.io的模型使用了改进版的U-Net网络,这是一种常用于图像分割问题的人工神经网络。随后,他们在官方网站上发布文章,介绍了模型所使用的深度学习方法,并分享了在完成项目过程中学习到的教训。 量子位编译了他们的文章,供大家学习。 比赛介绍 国防科
近日 Mask TextSpotter v3 发布,代码已开源,论文 Mask TextSpotter v3: Segmentation Proposal Network for Robust Scene Text Spotting 详细介绍了其要解决的问题、使用的方案和达到的性能,此次更新依然带来惊喜,在多个数据集上大幅刷新了SOTA!
利用计算机图像识别、地址库、合卷积神经网提升手写运单机器有效识别率和准确率,大幅度地减少人工输单的工作量和差错可能。
液相色谱与质谱联用(LC-MS)是代谢组学中最受欢迎的分析平台之一。尽管基于LC-MS的代谢组学应用程序种类繁多以及分析硬件的发展,但是LC-MS数据的处理仍然遇到一些问题。最关键的瓶颈之一是原始数据处理,LC-MS原始数据通常由成千上万的原始MS质谱图组成;每个光谱都有其自己的序列号,并且该数目随保留时间(RT)的增加而增加。这些数据通常包含数千个信号,使得手动数据处理几乎变得不可能。当前用于自动LC-MS数据处理的流程通常包括以下步骤:(1)检测感兴趣区域(ROI);(2)检测色谱峰,然后对其进行积分;(3)所有样品的峰匹配(分组);(4)通过注释相应的加合物和碎片离子将属于同一代谢物的峰聚类为一组。
【新智元导读】微软亚洲研究院网络图形组培养了一大批中国图形学的人才。其首席研究员童欣,内部人称“童姥”,近日接受了新智元专访。在微软做了近20年图形的他认为,计算机图形跟计算机视觉是一对“好基友”,深度学习尚未席卷计算机图形学,但格局很快就要被打破了。图形的风口需要创造。童欣还介绍了微软今年在SIGGRAPH上发表的三篇和深度学习有关的图形研究。最后谈到跟图形息息相关的VR/AR,他表示:VR只是媒体而AR是平台,四大技术快速发展,爆发期将近。 童欣博士 1993年毕业于浙江大学计算机系,
计算机视觉的数据科学家经常需要快速简单的标记工具用来为PoC或R&D实验创建数据集,以及确保数据质量,以免影响深度学习算法的性能。本文介绍了5种非常棒的注释工具,如果你发现这些工具无法按预期工作,请尝试在Chrome中运行它们
大家好,又见面了,我是你们的朋友全栈君。 前面, 介绍了DNN及其参数求解的方法(深度学习之 BP 算法),我们知道DNN仍然存在很多的问题,其中最主要的就是BP求解可能造成的梯度消失和梯度爆炸.那么
领取专属 10元无门槛券
手把手带您无忧上云