首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于CNN的店铺LOGO识别

    随着越来越多的数据可用,机器学习现在已经广泛地应用于各个领域,例如个性化的视频推荐、医疗搜索中的图像和语音识别、欺诈识别、股票市场分析、自动驾驶车辆等等。...我们对于识别图像中的店铺招牌有兴趣的原因之一,在于后续我们将基于这一技术实现对twitter微博的情感分析。 1、数据集选择与预处理 任何机器学习项目的第一步,都是找到有趣的数据集。...识别店铺LOG的原理 在第二步,我们来决定要用的机器学习算法。...考虑到我们要识别图像中的小LOGO,CNN的另一个优势就是其具有位移不变性,也就是说,CNN可以识别出图像中任何区域的LOGO。...3、训练Keras卷积神经网络LOGO识别器 我们已经可以开始从零定义我们的卷积神经网络架构了。为此,在上面的卷积层之后,我们也利用了池化层。

    1.1K30

    CNN 在语音识别中的应用

    作者:侯艺馨 总结 目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。...回顾一年语音识别的发展,deep cnn绝对称得上是比较火的关键词,很多公司都在这方面投入了大量研究。...其实 CNN 被用在语音识别中由来已久,在 12、13 年的时候 Ossama Abdel-Hamid 就将 CNN 引入了语音识别中。...一些通用框架如Tensorflow,caffe等也提供CNN的并行化加速,为CNN在语音识别中的尝试提供了可能。 下面将由“浅”入“深”的介绍一下cnn在语音识别中的应用。...3.4  Google 根据 Mary Meeker 年度互联网报告,Google以机器学习为背景的语音识别系统,2017年3月已经获得英文领域95%的准确率,此结果逼近人类语音识别的准确率。

    8.8K31

    Mariana CNN 并行框架与图像识别

    现有系统的问题 在将CNN应用于图像相关领域的算法研究以及CNN训练平台搭建的实践过程中,受限于单个GPU上的显存大小(例如:服务器采购的显卡Tesla K20c可用显存为4.8GB,ImageNet...“十”模型划分方法 考虑极端情景:需要训练超大规模Deep CNNs模型,或者使用计算能力相对较强、显存较小(一般在1GB~3GB)的桌面级GeForce系列GPU,则利用模型本身的并行性这种基本的模型划分方法将不再适用...如图7所示,描述了将模型按“十”划分到4 Worker上训练的情景,不仅拆分了模型的可并行部分,也虽然这样的划分在Worker 0和Worker2之间,Worker 1和Worker 3之间达到并行加速效果...图7 “十”模型划分方案示意 CNNs网络的模型并行工作引擎 每个模型并行Worker上以一个模型并行执行引擎负责调度本Worker上子模型的执行过程。...效果展示 图9为图像标签识别的示例,通过对两千多类物体的图像进行训练,可实现对常见物体的自动识别

    1.2K70

    基于LSTM-CNN的人体活动识别

    来源:DeepHub IMBA本文约3400,建议阅读10+分钟本文带你使用移动传感器产生的原始数据来识别人类活动。...人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我将使用LSTM (Long - term Memory)和CNN (Convolutional Neural Network)来识别下面的人类活动: 下楼 上楼 跑步 坐着 站立 步行...第一个CNN层具有64个神经元,另一个神经元有128个神经元。在第一和第二CNN层之间,我们有一个最大池层来执行下采样操作。

    1.4K20
    领券