首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

微调模型中的Keras精度差异

在微调Keras模型时,可能会遇到精度差异的问题,这可能由多种因素引起。以下是对这些问题的详细解释,包括可能的原因和相应的解决方法。

基础概念

微调是迁移学习中的一种常见做法,它涉及在大型预训练模型的基础上,使用特定于目标任务的数据集进行进一步训练,以提高模型在目标任务上的性能。这种技术能够显著提高模型在有限数据集上的泛化能力,同时减少训练时间和计算资源的消耗。

相关优势

  • 提高模型性能:通过利用预训练模型的权重,微调可以显著提高模型在特定任务上的准确率。
  • 减少训练时间和资源消耗:微调通常比从头开始训练模型需要更少的计算资源和时间。

类型

  • Sequential模型:最简单的模型类型,由多个层线性堆叠而成。
  • Functional API模型:更复杂的模型类型,允许构建具有多输入或多输出的模型。
  • Subclassing模型:通过继承tf.keras.Model类来定义自定义模型。

应用场景

Keras模型广泛应用于图像识别、自然语言处理、语音识别等领域。例如,在图像识别中,可以使用预训练的ResNet模型进行微调,以识别特定类型的图像。

可能遇到的问题及解决方法

  • 数据集不匹配:确保数据集与预训练模型的输入数据格式相匹配。
  • 冻结层设置不正确:正确设置需要冻结的层和需要微调的层。
  • 学习率设置不合适:使用较小的学习率,或尝试学习率衰减策略。
  • 过拟合问题:使用数据增强技术或正则化方法来减少过拟合的风险。
  • 模型选择不合适:选择适合当前任务的预训练模型。

示例代码

以下是一个简单的示例,展示如何在Keras中微调一个预训练模型:

代码语言:txt
复制
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

# 加载预训练模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# 添加自定义层
x = base_model.output
x = Dense(256, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)  # 假设有10个类别

# 构建最终模型
model = Model(inputs=base_model.input, outputs=predictions)

# 冻结预训练模型的层
for layer in base_model.layers:
    layer.trainable = False

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(train_data, train_labels, epochs=10, batch_size=32, validation_data=(val_data, val_labels))

通过上述步骤,您可以有效地微调Keras模型,并减少由于各种原因导致的精度差异。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

理解keras中的sequential模型

keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...Keras有两种不同的构建模型的方法: Sequential models Functional API 本文将要讨论的就是keras中的Sequential模型。...keras中的Sequential模型构建也包含这些步骤。 首先,网络的第一层是输入层,读取训练数据。...在keras中,Sequential模型的compile方法用来完成这一操作。例如,在下面的这一行代码中,我们使用’rmsprop’优化器,损失函数为’binary_crossentropy’。...总结 keras中的Sequential模型其实非常强大,而且接口简单易懂,大部分情况下,我们只需要使用Sequential模型即可满足需求。

3.6K50

基于 Keras 对深度学习模型进行微调的全面指南 Part 2

翻译 | 霍晓燕 校对 | 杨东旭 整理 | 余杭 本部分属该两部系列中的第二部分,该系列涵盖了基于 Keras 对深度学习模型的微调。...第一部分阐述微调背后的动机和原理,并简要介绍常用的做法和技巧。本部分将详细地指导如何在 Keras 中实现对流行模型 VGG,Inception 和 ResNet 的微调。...硬件说明 我强烈建议在涉及繁重计算的Covnet训练时,使用GPU加速。速度差异相当大,我们谈论的 GPU 大约几小时而 CPU 需要几天。...Keras 微调 我已经实现了基于 Keras 的微调启动脚本,这些脚本存放在这个 github 页面中。...该模型在验证集上达到了 7.5% 的前 5 错误率,这使得他们在竞赛中获得了第二名。 VGG16 模型示意图: ? 可以在 vgg16.py 中找到用于微调 VGG16 的脚本。

1.7K30
  • 基于 Keras 对深度学习模型进行微调的全面指南 Part 1

    翻译 | 杨东旭 校对 | 孟凡 整理 | MY 在这篇文章中,我们将对实践中的微调做一个全面的概述,微调是深度学习中常用的方法。...我将借鉴自己的经验,列出微调背后的基本原理,所涉及的技术,及最后也是最重要的,在本文第二部分中将分步详尽阐述如何在 Keras 中对卷积神经网络模型进行微调。 首先,为什么对模型进行微调?...找到这些预训练模型的最好方法是用 google 搜索特定的模型和框架。但是,为了方便您的搜索过程,我将在流行框架上的常用预训练 Covnet 模型放在一个列表中。...Caffe Model Zoo -为第三方贡献者分享预训练 caffe 模型的平台 Keras Keras Application - 实现最先进的 Convnet 模型,如 VGG16 / 19,googleNetNet...在 Keras 中微调 在这篇文章的第二部分,我将详细介绍如何在 Keras 中对流行模型 VGG,Inception V3 和 ResNet 进行微调。

    1.4K10

    Keras中创建LSTM模型的步骤

    的复现与解读,新手博主,边学边记,以便后续温习,或者对他人有所帮助 概述 深度学习神经网络在 Python 中很容易使用 Keras 创建和评估,但您必须遵循严格的模型生命周期。...在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...例如,对于使用精度指标编译的模型,我们可以在新数据集上对其进行如下评估: loss, accuracy = model.evaluate(X, y) 与训练网络一样,提供了详细的输出,以给出模型评估的进度...注意: 由于算法或评估过程具有随机性,或数值精度的差异,您的结果可能会有所不同。考虑运行示例几次,并比较平均结果。 我们可以看到序列学得很好,特别是如果我们把预测四舍五入到小数点位。...总结 在这篇文章中,您发现了使用 Keras 库的 LSTM 循环神经网络的 5 步生命周期。 具体来说,您了解到: 1、如何定义、编译、拟合、评估和预测 Keras 中的 LSTM 网络。

    3.7K10

    解读大模型的微调

    然而,由于它不会更新模型参数以适应特定任务的微小差异,因此可能会限制其适应能力。此外,由于通常需要手动比较不同提示的质量,提示微调可能需要耗费大量人力。 另一种利用纯粹的上下文学习方法的方法是索引。...虽然这种方法在以嵌入为重点的模型(如BERT)中特别常见,但也可以从生成式GPT-style模型中提取嵌入。 分类模型可以是逻辑回归模型、随机森林或XGBoost ,也可以任何我们想要的模型。...在huggingface提供的PEFT工具中,可以很方便地实现将普通的HF模型变成用于支持轻量级微调的模型,使用非常便捷,目前支持4种策略,分别是: LoRA Prefix Tuning P-Tuning...然而,像前缀微调、适配器和低秩适应等技术,它们“修改”多个层,以极低的成本实现更好的预测性能。 4.RHLF 在人类反馈增强学习中,预训练模型使用监督学习和强化学习相结合进行微调。...但是,诸如基于特征的方法、上下文学习和参数高效微调技术等方法,可以在最小化计算成本和资源的同时,有效地将LLM应用到新任务中。

    99930

    预测金融时间序列——Keras 中的 MLP 模型

    另一方面,我们可以仅预测第二天(或几天后)的价格值或与前一天相比第二天的价格变化,或这种差异的对数——即,我们要预测一个数字,这是一个问题回归。...神经网络架构 我们将使用多层感知器作为基本模型。让我们把Keras作为一个实现框架——它非常简单、直观,你可以用它来实现相当复杂的计算图,但到目前为止我们还不需要它。...Keras 还允许我们非常灵活地控制训练过程,例如,如果我们的结果没有改善,最好减少梯度下降步骤的值——这正是 Reduce LR On Plateau 所做的,我们将其添加为回调到模型训练。...我们将从最常见的方式开始——在权重总和的L2 范数中向误差函数添加一个附加项,在Keras 中, 这是使用 keras.regularizers.activity_regularizer 完成的。...因此,值得使用近年来流行的 Dropout 技术为我们的模型添加更多的正则化——粗略地说,这是在学习过程中随机“忽略”一些权重,以避免神经元的共同适应(以便他们不学习相同的功能)。

    5.4K51

    如何为Keras中的深度学习模型建立Checkpoint

    深度学习模式可能需要几个小时,几天甚至几周的时间来训练。 如果运行意外停止,你可能就白干了。 在这篇文章中,你将会发现在使用Keras库的Python训练过程中,如何检查你的深度学习模型。...Checkpoint最佳神经网络模型 如果验证精度提高的话,一个更简单的Checkpoint策略是将模型权重保存到相同的文件中。...在这种情况下,只有当验证数据集上的模型的分类精度提高到到目前为止最好的时候,才会将模型权重写入文件“weights.best.hdf5”。...在这篇文章中,你将会发现在使用Keras库的Python训练过程中,如何检查你的深度学习模型。 让我们开始吧。...Checkpoint最佳神经网络模型 如果验证精度提高的话,一个更简单的Checkpoint策略是将模型权重保存到相同的文件中。

    14.9K136

    LoRA大模型微调的利器

    LoRA(Low-Rank Adaptation)是一种微调Stable Diffusion模型的训练技术。 虽然我们已经有像Dreambooth和文本反转这样的训练技术。那么LoRA有什么用呢?...研究人员发现,微调这部分模型就足以实现良好的训练。交叉注意力层是下面Stable Diffusion模型架构中的黄色部分。 交叉注意力层的权重以矩阵的形式排列。...矩阵只是按列和行排列的一堆数字,就像Excel电子表格上一样。LoRA模型通过将自己的权重加到这些矩阵上来微调模型。 如果LoRA模型需要存储相同数量的权重,它们的文件怎么会更小呢?...实用的LoRA模型 这里介绍一些在实际应用中比较实用的Lora。 add_detail 谁不想要AI图像中更多的细节?细节调整器允许你增加或减少图像中的细节。现在,你可以调整你想要的细节量。...你可以通过在提示中包含一个短语轻松地在AUTOMATIC1111中使用它们。 我将在以后的文章中告诉你如何自己来训练一个LoRA模型。

    46120

    微调预训练的 NLP 模型

    不幸的是,通用模型常常忽略这些微妙的关系。 下表展示了从基本多语言 USE 模型获得的相似性的差异: 为了解决这个问题,我们可以使用高质量的、特定领域的数据集来微调预训练的模型。...这一适应过程显着增强了模型的性能和精度,充分释放了 NLP 模型的潜力。 ❝在处理大型预训练 NLP 模型时,建议首先部署基本模型,并仅在其性能无法满足当前特定问题时才考虑进行微调。...在本教程中,我们将专注于一次(几次)学习方法与用于微调过程的暹罗架构相结合。 理论框架 可以通过监督学习和强化学习等各种策略来微调 ML 模型。...对比损失和学习:模型的学习以“对比损失”为指导,即预期输出(训练数据的相似度得分)与计算出的相似度之间的差异。这种损失指导模型权重的调整,以最大限度地减少损失并提高学习嵌入的质量。...然而,相似性可视化显示相似标题之间的相似性得分增强,而不同标题的相似性得分降低。 总结 微调预训练的 NLP 模型以进行领域适应是一种强大的技术,可以提高其在特定上下文中的性能和精度。

    30531

    2024年大语言模型的微调

    在微调过程中,你需要从训练数据集中选择提示,并将其传入LLM,最后由LLM生成结果。 在微调阶段,当模型接触到一个针对目标任务的(新标记的)数据集时,它会计算其预测值与实际标签之间的误差或差异。...该过程使用标记数据对模型进行了更新(根据输出结果和实际结果之间的差异进行了变更),从而提升了模型在该任务中的表现。 举例说明上述过程:如果你询问一个预训练的模型"为什么天空是蓝色的?"...这种方式其实就是给模型提供一些用于某种场景的请求-响应的例子,增强其在某种场景下能力。 完全微调(full fine-tuning) 在指导微调中,当所有的模型权重被更新后,此时称之为完全微调。...完全微调LLM会在监督学习过程中更新每个模型的权重,而PEFT方法只会更新一部分参数。...在将微调应用到RAG系统一文中就通过将二者结合来确定和改进模型中较弱的组件。 RAG和微调的对比如下: 微调最佳实践 明确定义任务 定义任务是微调大语言模型的基础步骤。

    41310

    重新聚焦Attention在微调大模型中的重要性

    比如下方图1(b),我们把一个pretrained ViT迁移到下游的鸟类分类任务,却发现微调后得到的attention往往非常杂乱,这有可能会对模型在下游任务上的表现有影响。...图1:(a) 我们的方法通过重新聚焦模型的attention来大幅提升大模型在下游任务上的表现;(b) 目前的微调方法往往无法将模型的注意力集中到和下游任务有关的信息上(在这个例子里是前景的鸟)。...在这篇文章中我们发现,通过把模型的attention重新聚焦到和下游任务相关的信息上(图1(a)),我们可以大幅提高模型在下游任务的表现。...在这篇工作中,我们重新聚焦attention的方法就是,首先把预训练过的模型固定住,在上面加一个top-down attention模块,然后在下游任务上只去微调这个top-down attention...模块即可: 图2:我们的方法将预训练过的模型(蓝色部分)固定住,然后在上面加一个top-down attention模块(橙色部分)并且只微调这个模块。

    13010

    keras中的损失函数

    损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...', optimizer='sgd') 或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...(即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels

    2.1K20

    【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用

    代码: # 使用迁移学习的思想,以VGG16作为模板搭建模型,训练识别手写字体 # 引入VGG16模块 from keras.applications.vgg16 import VGG16 # 其次加载其他模块...from keras.datasets import mnist # 加载OpenCV(在命令行中窗口中输入pip install opencv-python),这里为了后期对图像的处理, # 大家使用...这些变化是为了使图像满足VGG16所需要的输入格式 import cv2 import h5py as h5py import numpy as np # 建立一个模型,其类型是Keras的Model...类对象,我们构建的模型会将VGG16顶层(全连接层)去掉,只保留其余的网络 # 结构。...这里用include_top = False表明我们迁移除顶层以外的其余网络结构到自己的模型中 # VGG模型对于输入图像数据要求高宽至少为48个像素点,由于硬件配置限制,我们选用48个像素点而不是原来

    2.2K20

    keras中的数据集

    数据在深度学习中的重要性怎么说都不为过,无论是训练模型,还是性能调优,都离不开大量的数据。有人曾经断言中美在人工智能领域的竞赛,中国将胜出,其依据就是中国拥有更多的数据。...具体说来,keras.datasets模块包含了加载和获取流行的参考数据集的方法。...通过这些数据集接口,开发者不需要考虑数据集格式上的不同,全部由keras统一处理,下面就来看看keras中集成的数据集。...注意 keras.datasets模块包含了从网络下载数据的功能,下载后的数据集保存于 ~/.keras/datasets/ 目录。因为这些数据集来源各有不同,有些需要访问外国网站才能访问。...出于方便起见,单词根据数据集中的总体词频进行索引,这样整数“3”就是数据中第3个最频繁的单词的编码。

    1.8K30

    Keras 中神经网络模型的 5 步生命周期

    在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...Keras 中神经网络模型的5步生命周期 步骤 1.定义网络 第一步是定义您的神经网络。 神经网络在 Keras 中定义为层序列。这些层的容器是 Sequential 类。...这在 Keras 中是一个有用的概念,因为传统上与层相关的关注点也可以拆分并作为单独的层添加,清楚地显示它们在从输入到预测的数据转换中的作用。...例如,对于使用精度度量编制的模型,我们可以在新数据集上对其进行评估,如下所示: 1loss, accuracy = model.evaluate(X, y) 第 5 步.做出预测 最后,一旦我们对拟合模型的表现感到满意...如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。

    1.9K30

    聊聊大模型的微调实现及其应用

    微调框架概述 模型的微调有多种方式,对于入门的来说,一般都是基于官方的文档微调;最近发现很多开源库,其目的就是支持应用多种微调策略来微调模型,简化模型的微调门槛。...应用 目前绝大多数的大模型都是基于基座模型(GLM、QWen、LlaMa、BaiChuan)等微调训练而来,不过实现的逻辑却是有多种,要么基于官方的微调文档,要么基于开源微调库实现。...CareGPT 就是基于开源微调库LLaMA-Factory实现的医疗领域大模型。...其架构设计如下: 在其架构设计中,有两个部分比较值得关注: 微调框架的集成 通过集成了微调框架,调用底层具备的能力,准备多种格式的数据集微调模型。...数据开放 基于开源医疗数据集,准备增量预训练预料、指令监督预料、SFT预料等等;扩充基座模型的领域知识能力。 总结 基于个人使用及学习的角度,介绍了微调框架的概述及其应用。

    42710

    利用迁移学习突破小数据集瓶颈-提升模型性能的策略与实践

    例如,在图像分类任务中,可以将已经在大规模图像数据集(如ImageNet)上训练好的模型迁移到一个特定领域的数据集(如医学图像)上进行微调。2....代码示例:利用迁移学习提升小数据集表现在这个例子中,我们将使用TensorFlow和Keras,演示如何使用迁移学习在一个小数据集上提升图像分类模型的表现。...导入库和数据集在这个示例中,我们使用的是Keras自带的cats_vs_dogs小数据集。你可以根据自己的需要修改数据集路径。...使用混合精度训练:通过混合精度训练(Mixed Precision Training),可以显著提高训练速度,同时减少显存占用。4....知识的“失真”问题在迁移学习中,由于源任务和目标任务的差异,源任务中学到的某些知识可能在目标任务中并不适用,导致所谓的“失真”问题。

    50320

    评估Keras深度学习模型的性能

    Keras是Python中一个的强大而易用的库,主要用于深度学习。在设计和配置你的深度学习模型时,需要做很多决策。大多数决定必须通过反复试错的方法来解决,并在真实的数据上进行评估。...因此,有一个可靠的方法来评估神经网络和深度学习模型的性能至关重要。 在这篇文章中,你将学到使用Keras评估模型性能的几种方法。 让我们开始吧。 ?...验证数据集可以通过validation_data参数指定给Keras中的fit()函数。...然后在运行结束时打印模型性能的平均值和标准偏差,以提供可靠的模型精度估计。...你学到了三种方法,你可以使用Python中的Keras库来评估深度学习模型的性能: 使用自动验证数据集。 使用手动验证数据集。 使用手动k-折交叉验证。

    2.2K80
    领券