卷积神经网络的深度学习使计算机更加有效、全面的处理图像,生物学领域正在逐渐运用这一技术,它能使细胞、基因等图像更加清晰,使机器看到更多人类从未见过的东西。 眼睛被认为是心灵的窗口——而谷歌的研究人员把它看作是一个人的健康指示器。这家科技巨头正在通过分析人视网膜照片,利用深度学习来预测人的血压、年龄和吸烟状况。谷歌(Google)的计算机从血管的排列中收集线索——一项初步研究表明,这些机器可以利用这些信息来预测一个人是否有心脏病发作的危险。 这项研究依赖于一种卷积神经网络,这是一种深层学习算法,它正在改变生物
深度学习基础理论-CNN篇 卷积神经网络的发展历程 - 01 - 卷积神经网络(Convolutional Neural Networks,简称CNN)是一类特殊的人工神经网络,区别于神经网络其
【编者按】三大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton在深度学习领域的地位无人不知。为纪念人工智能提出60周年,最新的《Nature》杂志专门开辟了一个“人工智能 + 机器人”专题 ,发表多篇相关论文,其中包括了Yann LeCun、Yoshua Bengio和Geoffrey Hinton首次合作的这篇综述文章“Deep Learning”。本文为该综述文章中文译文的下半部分,详细介绍了CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展
选自Berkeley Lab 作者:Jon Bashor 机器之心编译 参与:李诗萌、刘晓坤 机器学习模型通常依赖于大量训练数据,所以在很多领域中难以施展拳脚。近日,伯克利实验室 CAMERA 的研究
卷积神经网络 当处理图像时,全连接的前馈神经网络会存在以下两个问题: 图像不能太大。比如,输入图像大小为 100 × 100 ×3(即图像高度为 100, 宽度为 100,3 个颜色通道 RGB)。在全连接前馈神经网络中,第一个隐藏 层的每个神经元到输入层都有 100 ∗ 100 ∗ 3 = 30, 000 个相互独立的连接, 每个连接都对应一个权重参数。随着隐藏层神经元数量的增多,参数的规 模也会极具增加。这会导致整个神经网络的训练效率会非常低,也很容易出现过拟合。 难以处理图像不变性。自然图像中的物
关于全连接神经网络(Full Connected Neural Network,FC)的讨论已经说的不少了,本篇将要介绍的是,从2006年至今的神经网络第三次浪潮中,取得巨大成功、处于最核心位置的技术
然而,大脑中的大多数神经行为非常复杂,不同程度上涉及了人脑的多个区域。其功能性也并不局限于对特定大脑区域的划分。歧义无所不在。因此,当发生脑部疾病并出现功能性障碍时,从宏观层面来调查其中的深层原因是相当困难的。回到机器的那个类比,科学家现在想弄清楚他们是否可以从微观层面来消除这种「歧义」,即通过大脑基本单元之间的连接——神经元。 体积电子显微镜(Volume EM)是一种常用的神经回路重建技术。其中,对大脑体积的三维 EM 成像技术可以用来重建神经元形态及其连接关系的细节信息。volume EM
2021年1月21日,中国人工智能学会理事长、中国工程院院士、清华大学自动化系、清华大学脑与认知科学研究院戴琼海课题组与中国科学院生物物理所李栋课题组在《自然•方法》(Nature Methods)杂志发表了题为“光学显微成像中超分辨卷积神经网络的测评和发展”(Evaluation and development of deep neural networks for image super-resolution in optical microscopy)的论文。
【新智元导读】深度学习很火,说起深度学习中一个很重要的概念——卷积神经网络(CNN)似乎也人人皆知。不过,CNN究竟是什么,涉及哪些概念,经过如何发展,真正要有逻辑地归纳一遍,估计不少人都说不清。日前,南洋理工大学研究人员梳理CNN发展历史,从基础组成部分讲起,介绍并探讨CNN在视觉识别方面的原理及应用,是系统深入理解CNN的好文。 Recent Advances in Convolutional Neural Networks 卷积神经网络进展 Jiuxiang Gu, Zhenhua Wang, Jas
卷积神经网络(convolutional neural network,CNN)是一种专门用来处理网格结构数据(例如图像数据)的前馈神经网络,是由生物学家Hubel和Wiesel在早期关于猫脑视觉皮层的研究发展而来。Hubel和Wiesel通过对猫脑视觉皮层的研究,发现初级视觉皮层中的神经元会响应视觉环境中特定的特征(称之为感受野机制),他们注意到了两种不同类型的细胞,简单细胞和复杂细胞。其中,简单细胞只对特定的空间位置和方向具有强烈的反应,而复杂细胞具有更大的接受域,其对于特征位置的微小偏移具有不变性。
在生物学领域,感受野,感受器受刺激兴奋时,通过感受器官中的向心神经元将神经冲动(各种感觉信息)传到上位中枢,一个神经元所反应(支配)的刺激区域就叫做神经元的感受野(receptive field)。又译为受纳野。末梢感觉神经元、中继核神经元以及大脑皮层感觉区的神经元都有各自的感受野。随感觉种类不同,感受野的性质、大小也不一致。
卷积神经网络(convolutional neural networks, CNN ) CNN 是针对图像领域任务提出的神经网络,经历数代人的发展,在2012年之后大部分图像任务被CNN统治,例如图像分类,图像分割,目标检测,图像检索等。
实际上深度学习,只是机器学习的一个子领域,同样地,机器学习也是人工智能的一个子领域。但是随着深度学习的发展,尤其是在AlphaGo那场世纪大战之后,深度学习渐渐地脱离于机器学习,人们口中的“机器学习”逐渐地成了传统机器学习,即不包含深度学习的那部分。与此同时,机器学习、深度学习同时也是计算机视觉、自然语言处理、语音识别的工具,上述领域的关系相辅相成,不能割裂地看待。
选自Nature 作者:Amy Maxmen 机器之心编译 参与:黄小天、李泽南 生物医疗是机器学习技术应用对接的重要领域之一。近日,Nature 报道了谷歌运用深度学习技术(主要是卷积神经网络)在该领域取得的新突破。谷歌通过分析眼球的视网膜图像,可以预测一个人的血压、年龄和吸烟状况,而且初步研究表明,这项技术在防范心脏病发作上很有成效。深度学习技术正改变着生物医疗学家处理分析图像的方式,甚至有助于发现从未触及的现象,有望开辟一条新的研究道路。 眼睛通常被认为是心灵的窗口——但是谷歌研究者却将其看作人体健
美国能源部劳伦斯伯克利国家实验室(伯克利实验室)的数学家们开发了一种新的机器学习方法,旨在实验成像数据。这种新方法不是依靠典型机器学习方法所使用的数十或数十万个图像,而是“更快地学习”,并且极少所需的
机器之心原创 作者:Yujia 参与:Joni、Rick R、吴攀 人脑是一个智能而复杂的机器。这种类比在某些方面是准确的,并且在大脑研究领域中提供了一种方法。我们都知道,人脑可以分为四个部分:额叶、顶叶、颞叶和枕叶。这种划分的其中一个标准是功能性(functionality),或者说该区域负责行使哪种功能。例如,颞叶通常与听觉处理和嗅觉有关,而枕叶通常与视觉信息处理有关。 然而,大脑中的大多数神经行为非常复杂,不同程度上涉及了人脑的多个区域。其功能性也并不局限于对特定大脑区域的划分。歧义无所不在。因此,当
提起卷积神经网络,我们总会从LeNet5开始说起,但是LeNet5不是起点也不是终点,这一期扒一下图像和CNN的发家历史。
这是专栏《AI初识境》的第2篇文章。所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法。
追根溯源,神经网络诞生于人类对于人脑和智能的追问。而这个追问经历了旷远蒙昧的精神至上学说,直到 19 世纪 20 年代。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
上一次我们讲述了人工智能的完整历史,自从图灵提出了“机器智能”,达特茅斯会议提出“人工智能”学科后,研究人员就开始活跃起来。
1 卷积神经网络(CNN)定义 卷积神经网络(convolutional neural network, CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。卷积网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。
作为人类,我们不断地通过眼睛来观察和分析周围的世界,我们不需要刻意的“努力”思考,就可以对岁看到的一切做出预测,并对它们采取行动。当我们看到某些东西时,我们会根据我们过去学到的东西来标记每个对象。为了说明这些情况,请看下面这张图片:
本系列为 斯坦福CS231n 《深度学习与计算机视觉(Deep Learning for Computer Vision)》的全套学习笔记,对应的课程视频可以在 这里 查看。更多资料获取方式见文末。
作为人类,我们不断地通过眼睛来观察和分析周围的世界,我们不需要刻意的“努力”思考,就可以对所看到的一切做出预测,并对它们采取行动。当我们看到某些东西时,我们会根据我们过去学到的东西来标记每个对象。为了说明这些情况,请看下面这张图片:
本文介绍了深度学习的发展历程、技术原理、模型架构、应用领域以及未来前景。
本文是对卷积神经网络的基础进行介绍,主要内容包括卷积神经网络概念、卷积神经网络结构、卷积神经网络求解、卷积神经网络LeNet-5结构分析、卷积神经网络注意事项。
最近我们被客户要求撰写关于CNN(卷积神经网络)的研究报告,包括一些图形和统计输出。
卷积神经网络由输入层(input layer)、卷积层(convolution layer)、池化层(pooling layer)、全连接层(fully connected layer)和输出层(output layer)组成。
无人驾驶汽车最早可以追溯到1989年。神经网络已经存在很长时间了,那么近年来引发人工智能和深度学习热潮的原因是什么呢?(点击文末“阅读原文”获取完整代码数据)
最新揭晓结果的全球胸部多器官分割大赛,腾讯旗下顶级AI实验室——腾讯优图与厦门大学王连生老师实验室联手,以TencentX之名从全球638支队伍中脱颖而出。
无人驾驶汽车最早可以追溯到1989年。神经网络已经存在很长时间了,那么近年来引发人工智能和深度学习热潮的原因是什么呢?[1秒]答案部分在于摩尔定律以及硬件和计算能力的显著提高。我们现在可以事半功倍。顾名思义,神经网络的概念是受我们自己大脑神经元网络的启发。神经元是非常长的细胞,每个细胞都有称为树突的突起,分别从周围的神经元接收和传播电化学信号。结果,我们的脑细胞形成了灵活强大的通信网络,这种类似于装配线的分配过程支持复杂的认知能力,例如音乐播放和绘画。
在计算机视觉领域,通常要做的就是指用机器程序替代人眼对目标图像进行识别等。那么神经网络也好还是卷积神经网络其实都是上个世纪就有的算法,只是近些年来电脑的计算能力已非当年的那种计算水平,同时现在的训练数据很多,于是神经网络的相关算法又重新流行起来,因此卷积神经网络也一样流行。
Deep-Learning-Papers-Reading-Roadmap: [1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." (2015) (Three Giants' Survey) Review 机器学习在当下有很多应用:从网络搜索的内容过滤到电商的商品推荐,以及在手持设备相机和智能手机上的应用。机器学习系统用来做图像识别,语音转换,推送符合用户兴趣的内容。这些应用逐渐地开始不仅仅使用机器学习,越来越多的使用
无人驾驶汽车最早可以追溯到1989年。神经网络已经存在很长时间了,那么近年来引发人工智能和深度学习热潮的原因是什么呢?答案部分在于摩尔定律以及硬件和计算能力的显著提高。我们现在可以事半功倍。顾名思义,神经网络的概念是受我们自己大脑神经元网络的启发。神经元是非常长的细胞,每个细胞都有称为树突的突起,分别从周围的神经元接收和传播电化学信号。结果,我们的脑细胞形成了灵活强大的通信网络,这种类似于装配线的分配过程支持复杂的认知能力,例如音乐播放和绘画。
本文研究三维点云的标记问题。介绍了一种基于三维卷积神经网络的点云标记方法。我们的方法最大限度地减少了标记问题的先验知识,并且不像大多数以前的方法那样需要分割步骤或手工制作的特征。特别是,我们提出了在培训和测试过程中处理大数据的解决方案。在包含7类对象的城市点云数据集上进行的实验显示了我们应用程序的鲁棒性。
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
目前 CNN 已经得到了广泛的应用,比如:人脸识别、自动驾驶、美图秀秀、安防等很多领域。
目前人工智能是最火热的领域,而深度学习是人工智能中最璀璨的分支,已经在自然图像上取得了阶段性进展。今天我将分享深度学习在医学影像上的应用最近进展,这一篇主要说一下从2015年到现在深度学习在医学影像分类相关的情况。
首先第一部分也是莫烦老师的在线学习笔记,个人感觉挺好的基础知识,推荐给大家学习。对机器学习进行分类,包括: 1.监督学习:通过数据和标签进行学习,比如从海量图片中学习模型来判断是狗还是猫,包括分类、回归、神经网络等算法;
循环神经网络(RNN)已经在众多自然语言处理中取得了大量的成功以及广泛的应用。但是,网上目前关于 RNNs 的基础介绍很少,本文便是介绍 RNNs 的基础知识,原理以及在自然语言处理任务重是如何实现的。文章内容根据 AI 研习社线上分享视频整理而成。 在近期 AI 研习社的线上分享会上,来自平安科技的人工智能实验室的算法研究员罗冬日为大家普及了 RNN 的基础知识,分享内容包括其基本机构,优点和不足,以及如何利用 LSTM 网络实现语音识别。 罗冬日,目前就职于平安科技人工智能实验室,曾就职于百度、大众点评
本系列将分为 8 篇 。本次为第 6 篇 ,介绍在计算机视觉中使用广泛并且十分基础的卷积神经网络 。
本文是《Nature》杂志为纪念人工智能60周年而专门推出的深度学习综述,也是Hinton、LeCun和Bengio三位大神首次合写同一篇文章。该综述在深度学习领域的重要性不言而喻,可以说是所有人入门深度学习的必读作品。
翻译 | kevin,刘志远 审校 | 李成华 【编者按】深度学习三巨头Geoffrey Hinton、Yann LeCun和Yoshua Bengio对AI领域的贡献无人不知、无人不晓。本文是《Nature》杂志为纪念人工智能60周年而专门推出的深度学习综述,也是Hinton、LeCun和Bengio三位大神首次合写同一篇文章。该综述在深度学习领域的重要性不言而喻,可以说是所有人入门深度学习的必读作品。 本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表示、RNN及其
作者 | FJODOR VAN VEEN 编译 | AI100(ID:rgznai100) 在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易。光是知道各式各样的神经网络模型缩写(如:DCIGN、BiLSTM、DCGAN……还有哪些?),就已经让人招架不住了。 因此,这里整理出一份清单来梳理所有这些架构。其中大部分是人工神经网络,也有一些完全不同的怪物。尽管所有这些架构都各不相同、功能独特,当我在画它们的节点图时……其中潜在的关系开始逐渐清晰起来
1.Globally Guided Progressive Fusion Network for 3D Pancreas Segmentation(MICCAI 2019:用于三维胰腺分割全局引导的渐进融合网络)
【编者按】深度学习领域的三位大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton无人不知无人不晓。此前,为纪念人工智能提出60周年,Yann LeCun、Yoshua Bengio和Geoffrey Hinton首次合作了这篇综述文章“Deep Learning”。 该综述文章中文译文的上半部分,深入浅出地介绍了深度学习的基本原理和核心优势。 原文摘要: 深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了显著的改善,包括
翻译 | kevin,刘志远 审校 | 李成华 深度学习世界 【编者按】深度学习三巨头Geoffrey Hinton、Yann LeCun和Yoshua Bengio对AI领域的贡献无人不知、无人不晓。本文是《Nature》杂志为纪念人工智能60周年而专门推出的深度学习综述,也是Hinton、LeCun和Bengio三位大神首次合写同一篇文章。该综述在深度学习领域的重要性不言而喻,可以说是所有人入门深度学习的必读作品。 本文上半部分深入浅出介绍深度学习的基本原理和核心优势,下半部分则详解CNN、分布式特征表
贝叶斯推断是概率论和统计学机器学习中的重要组成部分。 它是基于由著名统计学家托马斯贝叶斯给出的贝叶斯定理。 在贝叶斯推断中,随着更多证据或信息的出现,假设概率得到更新。
领取专属 10元无门槛券
手把手带您无忧上云