首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度学习能使细胞和基因图像更加清晰

卷积神经网络的深度学习使计算机更加有效、全面的处理图像,生物学领域正在逐渐运用这一技术,它能使细胞、基因等图像更加清晰,使机器看到更多人类从未见过的东西。 眼睛被认为是心灵的窗口——而谷歌的研究人员把它看作是一个人的健康指示器。这家科技巨头正在通过分析人视网膜照片,利用深度学习来预测人的血压、年龄和吸烟状况。谷歌(Google)的计算机从血管的排列中收集线索——一项初步研究表明,这些机器可以利用这些信息来预测一个人是否有心脏病发作的危险。 这项研究依赖于一种卷积神经网络,这是一种深层学习算法,它正在改变生物

05
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    前沿 | 视网膜眼底图像预测心脏病风险:Nature综述深度学习在生物医疗中的新应用

    选自Nature 作者:Amy Maxmen 机器之心编译 参与:黄小天、李泽南 生物医疗是机器学习技术应用对接的重要领域之一。近日,Nature 报道了谷歌运用深度学习技术(主要是卷积神经网络)在该领域取得的新突破。谷歌通过分析眼球的视网膜图像,可以预测一个人的血压、年龄和吸烟状况,而且初步研究表明,这项技术在防范心脏病发作上很有成效。深度学习技术正改变着生物医疗学家处理分析图像的方式,甚至有助于发现从未触及的现象,有望开辟一条新的研究道路。 眼睛通常被认为是心灵的窗口——但是谷歌研究者却将其看作人体健

    07

    前沿 | 新框架SyConn利用卷积神经网络和随机森林阅读神经成像:可识别线粒体和突触等

    机器之心原创 作者:Yujia 参与:Joni、Rick R、吴攀 人脑是一个智能而复杂的机器。这种类比在某些方面是准确的,并且在大脑研究领域中提供了一种方法。我们都知道,人脑可以分为四个部分:额叶、顶叶、颞叶和枕叶。这种划分的其中一个标准是功能性(functionality),或者说该区域负责行使哪种功能。例如,颞叶通常与听觉处理和嗅觉有关,而枕叶通常与视觉信息处理有关。 然而,大脑中的大多数神经行为非常复杂,不同程度上涉及了人脑的多个区域。其功能性也并不局限于对特定大脑区域的划分。歧义无所不在。因此,当

    06
    领券