首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    详解Pandas读取csv文件时2个有趣的参数设置

    导读 Pandas可能是广大Python数据分析师最为常用的库了,其提供了从数据读取、数据预处理到数据分析以及数据可视化的全流程操作。...其中,在数据读取阶段,应用pd.read_csv读取csv文件是常用的文件存储格式之一。今天,本文就来分享关于pandas读取csv文件时2个非常有趣且有用的参数。 ?...打开jupyter lab,键入pd.read_csv?并运行即可查看该API的常用参数注解,主要如下: ? 其中大部分参数相信大家都应该已经非常熟悉,本文来介绍2个参数的不一样用法。...给定一个模拟的csv文件,其中主要数据如下: ? 可以看到,这个csv文件主要有3列,列标题分别为year、month和day,但特殊之处在于其分隔符不是常规的comma,而是一个冒号。...文件中三列拼接解析为日期的需求就非常容易,即将0/1/2列拼接解析就可以了。

    2.1K20

    数据分析工具篇——数据读写

    在使用过程中会用到一些基本的参数,如上代码: 1) dtype='str':以字符串的形式读取文件; 2) nrows=5:读取多少行数据; 3) sep=',:以逗号分隔的方式读取数据; 4) header...if not lines: break 读取数据主要有两个: 1) r:覆盖式读取; 2) r+:追加式读取; 1.3、读入mysql中的数据: import sqlalchemy...1.4、使用pyspark读取数据: from pyspark.sql import SparkSession spark = SparkSession\ .builder\...是一个相对较新的包,主要是采用python的方式连接了spark环境,他可以对应的读取一些数据,例如:txt、csv、json以及sql数据,可惜的是pyspark没有提供读取excel的api,如果有.../Users/livan/PycharmProjects/spark_workspace/total_data_append_1.csv") 2)读取txt数据: df1 = spark.read.text

    3.3K30

    【原】Spark之机器学习(Python版)(一)——聚类

    首先来看一下Spark自带的例子: 1 from pyspark.mllib.linalg import Vectors 2 from pyspark.ml.clustering import KMeans...我的数据集是csv格式的,而Spark又不能直接读取csv格式的数据,这里我们有两个方式,一是我提到的这篇博文里有写怎么读取csv文件,二是安装spark-csv包(在这里下载),github地址在这里...安装好这个包以后,就可以读取数据了 1 from pyspark.sql import SQLContext 2 sqlContext = SQLContext(sc) 3 data = sqlContext.read.format...)   读取数据以后,我们来看一下数据集: 1 +------+------------+-----------+------------+-----------+-------+ 2 |row.id...import Row 2 from pyspark.ml.clustering import KMeans 3 from pyspark.mllib.linalg import Vectors

    2.3K100

    PySpark做数据处理

    阅读完本文,你可以知道: 1 PySpark是什么 2 PySpark工作环境搭建 3 PySpark做数据处理工作 “我们要学习工具,也要使用工具。”...2:Spark Streaming:以可伸缩和容错的方式处理实时流数据,采用微批处理来读取和处理传入的数据流。 3:Spark MLlib:以分布式的方式在大数据集上构建机器学习模型。...2 PySpark工作环境搭建 我以Win10系统64位机,举例说明PySpark工作环境过程搭建。 第一步: 下载和安装好Anaconda数据科学套件。...import findspark findspark.init() 3 PySpark数据处理 PySpark数据处理包括数据读取,探索性数据分析,数据选择,增加变量,分组处理,自定义函数等操作。...创建一个Spark会话对象 spark=SparkSession.builder.appName('data_processing').getOrCreate() # 加载csv数据集 df=spark.read.csv

    4.3K20

    PySpark on HPC 续:批量处理的框架的工程实现

    PySpark on HPC系列记录了我独自探索在HPC利用PySpark处理大数据业务数据的过程,由于这方面资料少或者搜索能力不足,没有找到需求匹配的框架,不得不手搓一个工具链,容我虚荣点,叫“框架”...框架的实现功能如下: generate job file(生成批量任务描述文件):读取raw data folder,生成带读取raw file list,根据输入job参数(batch size)等输出系列...,或者conda环境)和输入输出数据、任务描述(job file)需要存放于HPC各个节点都可以访问的存储上; 2 Process script & job file generate 具体任务处理脚本有几点注意事项...: 初始化HPC PySpark环境; 入口函数接受一个job file路径,该文件是一个表格文件(如csv),有3列,in_file,out_file,tmp_folder(用于Spark输出,后面gzip...j.err /python .py -i $1 调用方法 sbatch spark-hpc-batch.sh 2)

    1.4K32

    PySpark 是如何实现懒执行的?懒执行的优势是什么?

    在 PySpark 中,懒执行(Lazy Evaluation)是一种重要的优化机制。它意味着在数据处理过程中,实际的计算操作并不是在定义时立即执行,而是在最终需要结果时才触发执行。...一旦触发“动作”操作,PySpark 会根据构建好的 DAG 执行实际的计算任务。懒执行的优势优化执行计划:通过懒执行,PySpark 可以在实际执行之前对整个执行计划进行优化。...示例代码以下是一个简单的示例,展示了 PySpark 的懒执行机制:from pyspark.sql import SparkSession# 创建 SparkSessionspark = SparkSession.builder.appName...("LazyEvaluationExample").getOrCreate()# 读取 CSV 文件并创建 DataFramedf = spark.read.csv("path/to/your/file.csv...df.filter(df["column_name"] > 100)grouped_df = filtered_df.groupBy("column_name1").agg( avg("column_name2"

    3500

    大数据ETL实践探索(3)---- 大数据ETL利器之pyspark

    系列文章: 1.大数据ETL实践探索(1)---- python 与oracle数据库导入导出 2.大数据ETL实践探索(2)---- python 与aws 交互 3.大数据ETL实践探索(3)...6.aws ec2 配置ftp----使用vsftp 7.浅谈pandas,pyspark 的大数据ETL实践经验 ---- pyspark Dataframe ETL 本部分内容主要在 系列文章...('EXPORT.csv') .cache() ) print(df.count()) # 数据清洗,增加一列,或者针对某一列进行udf...("overwrite").parquet("data.parquet") # 读取parquet 到pyspark dataframe,并统计数据条目 DF = spark.read.parquet...它不仅提供了更高的压缩率,还允许通过已选定的列和低级别的读取器过滤器来只读取感兴趣的记录。因此,如果需要多次传递数据,那么花费一些时间编码现有的平面文件可能是值得的。 ?

    3.9K20
    领券