首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我们如何比较图聚类结果以在蛋白质-蛋白质相互作用网络中找到相似的基因?

在蛋白质-蛋白质相互作用网络中,我们可以使用图聚类的方法来找到相似的基因。图聚类是一种将网络中的节点划分为不同的群组或簇的技术,它可以帮助我们发现具有相似功能或相似结构的基因。

要比较图聚类结果以找到相似的基因,可以采用以下步骤:

  1. 构建蛋白质-蛋白质相互作用网络:首先,我们需要根据已知的蛋白质-蛋白质相互作用数据构建一个网络模型。这个网络模型可以使用邻接矩阵或边列表等形式表示,其中节点表示基因,边表示基因之间的相互作用关系。
  2. 应用图聚类算法:选择适当的图聚类算法,例如谱聚类、模块度最大化、k-means等,将网络中的基因划分为不同的群组或簇。这些算法可以根据基因之间的相似性度量来确定基因的聚类。
  3. 比较聚类结果:比较不同的聚类结果以找到相似的基因。可以使用一些评估指标,如模块度、归一化互信息等来评估聚类结果的质量。同时,还可以使用可视化工具来展示聚类结果,以便更直观地比较和分析。
  4. 确定相似的基因:根据比较结果,找到具有相似功能或相似结构的基因。这些相似的基因可能在相互作用网络中处于同一聚类中,或者它们之间存在较高的相似性度量。

在腾讯云的产品中,可以使用腾讯云图数据库TGDB来存储和处理蛋白质-蛋白质相互作用网络数据。TGDB是一种高性能、高可靠性的图数据库,可以支持大规模图数据的存储和查询。您可以通过以下链接了解更多关于腾讯云图数据库TGDB的信息:腾讯云图数据库TGDB

请注意,本回答仅提供了一种解决方案,实际应用中可能还需要根据具体情况进行调整和优化。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

    今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

    02

    Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

    今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

    03

    由复合嵌入模型分解的单细胞成对关系

    本文介绍由不列颠哥伦比亚大学的Yongjin P. Park通讯预印在bioRxiv的研究成果:在多细胞生物中,细胞特性和功能是通过与周围其他细胞的相互作用来启动和完善的。在此,作者提出了一种名为SPURCE的可扩展机器学习方法,旨在系统地确定嵌入单细胞RNA序列数据中常见细胞间的通信模式。作者将该方法应用于研究肿瘤微环境,并整合了多个乳腺癌数据集,发现了七个经常观察到的相互作用特征和潜在的基因-基因相互作用网络。实验结果表明,通过不同的相互作用模式而不是已知标记基因的静态表达,可以更好地理解肿瘤异质性的一部分,尤其是同一亚型内的肿瘤异质性。

    02

    网络生物学的未来新方向

    今天我们介绍2022年在圣母大学组织的一个网络生物学未来方向研讨会,本文由研讨会参与者合著,总结了研讨会的讨论,预计其将帮助塑造网络生物学未来计算和算法研究的短期和长期愿景。网络生物学是一个跨学科领域,集计算科学和生物科学于一体,对于深入理解细胞功能和疾病至关重要。该领域存在约20年,仍处于初级发展阶段。由于多种因素导致该领域发生了快速变化和出现了新的计算挑战,包括数据复杂性的增加和不同组织水平上多种数据类型的出现以及数据量的增长。这意味着该领域的研究方向也需要发展。因此,汇聚了网络生物学各个计算和算法方面的活跃研究者,以确定这个领域的紧迫挑战。讨论的主题包括:生物网络的推断和比较、多模态数据整合和异构网络、高阶网络分析、网络上的机器学习以及基于网络的个体化医学。

    01

    Bioinformatics|LncADeep一种基于深度学习的从头开始识别lncRNA和功能注释工具

    今天给大家介绍北京大学朱怀球教授在Bioinformatics上发表的文章“LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning”。识别lncRNAs,推断lncRNAs的功能,以及对IncRNA注释进行全面的构建是十分必要的。本文提出LncADeep是第一个不仅可以识别lncRNAs并且推断lncRNAs功能的工具,在识别lncRNA上,LncADeep集成了序列固有和同源性特征,放入深度置信网络(DBN)对全长和部分的转录本进行判别。结果表明,lncADeep的性能优于最先进的工具,并且可以跨物种IncRNA鉴定。对于功能注释,本文首先利用序列和结构信息,基于深度神经网络(DNNs)的深度学习算法预测了lncRNA的相互作用蛋白质,随后融合了KEGG和Reactome等人路径富集分析并且利用预测的相互作用蛋白进行功能模块检测,从而提供了丰富的途径和功能模块作为功能注释。

    01

    Nature Communications:主要精神和神经退行性疾病的共同机制

    几种常见的精神病和神经退行性疾病具有共同的流行病学风险; 然而,它们是否具有共同的病理生理学尚不清楚,是科研工作者的研究重点。作者使用25个全基因组关联研究 (GWAS)结果和LD得分回归,发现精神疾病和神经退行性疾病之间存在八种显著的遗传相关性。作者将GWAS结果与人脑转录组 (n = 888) 和蛋白质组 (n = 722) 进行整合,以鉴定顺式和跨蛋白以及与每种疾病中的多效性或因果(致病)作用一致的蛋白质,为简洁起见称为因果蛋白(致病蛋白),并在每个疾病组中都发现了许多独特且共享的因果蛋白。值得注意的是,神经退行性疾病病因蛋白的30% (42个中的13个) 与精神疾病共享。此外,作者发现精神和神经退行性因果蛋白之间的蛋白质-蛋白质相互作用比偶然预期的多2.6倍。发现的结果共同表明,这些精神和神经退行性疾病具有共同的遗传和分子病理生理学,这对早期治疗和治疗发展具有重要影响。

    02

    Signalling entropy: A novel network-theoretical fram摘要简介

    摘要 系统生物学的一个关键挑战是阐明决定细胞表型的基本原理或基本定律。了解如何在癌症等疾病中改变这些基本原则对于将基础科学知识转化为临床进展非常重要。虽然正在取得重大进展,但通过系统生物学方法确定了新的药物靶点和治疗方法,我们仍然缺乏基本系统对某些治疗成功和其他治疗失败的理解。我们在此提倡一种新的方法框架,用于系统分析和解释分子基因数据,这是基于统计力学原理。具体而言,我们提出了细胞信号熵(或不确定性)的概念,作为一种新的手段 分析和解释基因数据,更重要的是,作为阐明基础生物学和疾病基础的系统级原则的一种手

    03

    Bioinformatics|TransformerCPI:通过深度学习以及自我注意机制和标签逆转实验,改善CPI的预测

    这次给大家介绍中国科学院上海药物所郑明月研究员的论文“TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments”。化合物-蛋白质相互作用(Compound-Protein Interactions ,CPIs)的识别是药物发现和化学基因组学研究中的关键任务,而没有三维结构的蛋白质在潜在的生物学靶标中占很大一部分,这就要求开发仅使用蛋白质序列信息来预测CPI的方法。为了解决这些问题,作者提出了一个名为TransformerCPI的新型变换神经网络,并引入了更为严格的标签反转实验来测试模型是否学习了真实的交互功能。实验表明TransformerCPI性能优异,可以反卷积以突出蛋白质序列和化合物原子的重要相互作用区域,这可能有助于优化配体结构的化学生物学研究。

    01

    Network在单细胞转录组数据分析中的应用

    面向单细胞的技术革命,让我们得以进入新的研究层面,但也对传统的分析方法提出了一系列的挑战。单细胞技术正在弥补分子生物学和组织生物学之间的鸿沟,进入高通量时代以来,这项技术所揭示的不是单一元素的信息,而是在单细胞层面揭示某种系统关系:DNA,RNA,ATAC等。我们知道,在系统中,关键要素除了来自元素本身(基因,转录本等生物小分子)之外,还来自元素之间的关系。虽然作为领域起源的社会网络分析可以追溯到20世纪30年代,图论可以上溯几个世纪,但网络科学的迅速崛起与普及只是近几十年的事情。目前,基因调控网络,生物代谢与信号转导网络,蛋白质互作网络作为基本的生物分子网络(Biological molecular network )已经在生物信息分析中得到广泛的应用。

    02

    Nature Methods | BIONIC: 利用Convolutions进行生物网络整合

    今天分享的是来自Bo wang、Gary D. Bader和Charles Boone实验室联合发表在《Nature Methods》上的论文《BIONIC:使用卷积的生物网络集成》。虽然很多数据构建的生物网络可用来映射细胞功能,但每种数据类型都有局限性。通过结合和自动加权输入信息来获得更准确和全面的基础生物特征,网络集合有望解决这些限制。作者提出了一种基于深度学习的网络集成算法,其中包含了一个图卷积网络框架。与现有的方法相比,此方法,即BIONIC,学习的特征包含更多的功能信息。BIONIC有无监督和半监督的学习模式,利用了可用的基因功能注释。BIONIC在输入网络的规模和数量上都是可扩展的,可以集成人类基因组多种规模的网络。为了证明BIONIC在识别新生物方面的有效性,作者从酵母的非必需基因谱中预测并通过实验验证了基础基因化学-遗传相互作用。

    02

    Nat. Methods | 利用深度学习进行基于生物物理学和数据驱动的分子机制建模

    本文介绍由美国马萨诸塞州波士顿哈佛医学院系统生物学系系统药理学实验室的Mohammed AlQuraishi等人发表于Nature Methods 的研究成果:研究人员报道了可微程序与分子和细胞生物学结合产生的新兴门类:“可微生物学”。本文作者介绍了可微生物学的一些概念并作了两个案例说明,展示了如何将可微生物学应用于整合跨生物实验中产生的多模态数据,解决这一存在已久的问题将促进生物物理和功能基因组学等领域的发展。作者讨论了结合生物和化学知识的ML模型如何克服稀疏的、不完整的、有噪声的实验数据造成的限制。最后,作者总结了它面临的挑战以及它可能扩展的新领域,可微编程仍有很多可发挥的空间,它将继续影响科技的发展。

    02

    Nat. Commun. | 借助机器学习设计和筛选合成细胞中新兴蛋白质功能

    今天为大家介绍的是来自Petra Schwille团队的一篇论文。最近,机器学习(ML)的应用为计算蛋白质设计领域带来了惊人的进步,使得针对工业和生物医药应用的蛋白质定向工程设计成为可能。然而,为细胞核心相关的新兴功能设计蛋白质,比如能够在时空上自组织并因此构建细胞空间的能力,仍然极具挑战。虽然在生成方面,条件生成模型和多状态设计正在兴起,但对于新兴功能而言,无论是计算上还是实验上,都缺乏专门为蛋白质设计项目所需的筛选方法。在这里作者展示了如何为机器学习生成的蛋白质变体实现这种筛选,这些蛋白质变体能在细胞内形成时空模式。对于计算筛选,作者采用了一种基于结构的分而治之方法来找到最有希望的候选者,而对于随后的体外筛选,作者使用了由自下而上的合成生物学建立的合成细胞模拟体。

    01
    领券