首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我只想将肿瘤从(脑肿瘤MRI图像)图像中分离出来,这意味着活动轮廓。

要将肿瘤从脑肿瘤MRI图像中分离出来,可以采用图像分割的方法。图像分割是将图像划分为不同的区域或对象的过程,可以帮助我们提取出感兴趣的目标。

在这个问题中,可以使用计算机视觉和图像处理的技术来实现肿瘤的分割。下面是一些常用的方法和技术:

  1. 基于阈值的分割:通过设定一个阈值,将图像中像素的灰度值与阈值进行比较,从而将肿瘤与背景分离。这是一种简单而常用的方法,适用于肿瘤与背景的灰度值差异较大的情况。
  2. 区域生长算法:从图像中的种子点开始,根据像素之间的相似性逐步生长,将相似的像素归为同一区域。可以根据肿瘤与周围组织的灰度值差异来设置生长的条件。
  3. 边缘检测算法:通过检测图像中的边缘信息,可以将肿瘤的轮廓提取出来。常用的边缘检测算法包括Sobel算子、Canny算子等。
  4. 基于机器学习的方法:可以使用机器学习算法来训练一个分类器,将肿瘤与非肿瘤区域进行分类。常用的机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)等。

在云计算领域,可以利用云计算平台提供的强大计算能力和存储资源来处理大规模的图像数据。以下是一些腾讯云相关产品和服务,可以用于图像分割和处理:

  1. 腾讯云图像处理(Image Processing):提供了丰富的图像处理功能,包括图像分割、边缘检测、图像滤波等。详情请参考:腾讯云图像处理
  2. 腾讯云人工智能(AI):腾讯云提供了多种人工智能服务,如图像识别、目标检测等,可以用于辅助肿瘤的分割和识别。详情请参考:腾讯云人工智能
  3. 腾讯云弹性计算(Elastic Compute):提供了强大的计算资源,可以用于图像处理和机器学习算法的训练。详情请参考:腾讯云弹性计算

需要注意的是,图像分割是一个复杂的任务,结果的准确性和效果受到多种因素的影响,包括图像质量、算法选择、参数设置等。因此,在实际应用中,可能需要进行多次尝试和优化,以获得最佳的分割结果。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

基于MRI医学图像的脑肿瘤分级

本文对近年来脑磁共振(MR)图像分割和肿瘤分级分类技术进行概述。文章强调了早期发现脑肿瘤及其分级的必要性。在磁共振成像(MRI)中,肿瘤可能看起来很清楚,但医生需要对肿瘤区域进行量化,以便进一步治疗。数字图像处理方法和机器学习有助于医生进一步诊断、治疗、手术前后的决策,从而发挥放射科医生和计算机数据处理之间的协同作用。本文旨在回顾以胶质瘤(包括星形细胞瘤)为靶点的肿瘤患者的脑部MR图像分割和分类的最新进展。阐述了用于肿瘤特征提取和分级的方法,这些方法可以整合到标准临床成像协议中。最后,对该技术的现状、未来发展和趋势进行了评估。本文发表在Biomedical Signal Processing and Control杂志。

03
  • 在BRATS挑战赛中用于脑肿瘤分割、预后评估和总体生存预测的最佳机器学习算法

    胶质瘤是最常见的原发性脑恶性肿瘤,具有不同程度的侵袭性、不同的预后和不同的组织学亚区,即瘤周水肿/瘤周浸润侵犯组织,坏死组织,增生活跃的组织,非强化的组织。这种内在的异质性也表现在它们的影像学表型上,因为它们的亚区域通过多参数磁共振成像(mpMRI)扫描中不同强度分布来描述,反映了不同的生物学特性。它们的形状、范围和位置的不均匀性是导致这些肿瘤难以切除的一些因素,在某些情况下甚至无法手术。在纵向扫描中,在评估表观肿瘤的潜在预后诊断时,需要切除肿瘤的数量也是一个考虑因素。此外,越来越多的证据表明,精确分割各种肿瘤亚区域可以为定量图像分析提供基础,从而预测患者的总体生存率。本研究评估了2012-2018年国际脑肿瘤分割(BraTS)挑战赛最后七次比赛中,mpMRI扫描中用于脑肿瘤图像分析的最新机器学习(ML)方法。具体而言,我们关注:

    03

    脑肿瘤的影像组学:图像评估、定量特征描述和机器学习方法

    影像组学描述了从影像图像中提取定量特征的一系列计算方法。其结果常常被用于评估影像诊断,预后以及肿瘤治疗。然而,在临床环境中,优化特征提取和快速获取信息的方法仍然面临重大挑战。同样重要的是,从临床应用角度,预测的影像组学特征必须明确地与有意义的生物学特征和影像科医生熟悉的定性成像特性相关联。在这里,我们使用跨学科的方法来强化影像组学的研究。我们通过提供基于新的临床见解的计算模型(例如,计算机视觉和机器学习)来探究脑肿瘤影像学研究(例如,潜在的图像意义)。我们概述了当前定量图像特征提取和预测方法,以及支持临床决策不同水平的可行的临床分类。我们还进一步讨论了机器学习未来可能面临的挑战和数据处理方法,以推进影像组学研究。本文发表在American Journal of Neuroradiology杂志。

    03

    动脉自旋标记磁共振(ASL)的神经放射学家指南

    动脉自旋标记(Arterial spin labeling, ASL)是一种无创测量脑血流量(cerebral blood flow, CBF)的MRI技术。本文为大脑ASL提供了实用指南,以及指出了ASL技术的潜在缺陷。文中还介绍了其技术和生理背景。目前,ASL主要的研究领域是脑血管病、痴呆症和神经肿瘤学。在脑血管疾病中,ASL由于其定量的性质和确定大脑动脉范围的能力而令人感兴趣。急性卒中中,半暗带侧支循环血供的来源可通过ASL进行可视化。在慢性脑血管病中,脑灌注受损的程度和严重程度可通过ASL看到,可用来指导治疗或预防干预。ASL具有检测和随访动静脉畸形的潜力。在痴呆症患者的检查中,ASL被认为是PET的一种诊断替代方法。它可以轻易添加在常规结构MRI检查中。在确诊为阿尔茨海默病和额颞叶痴呆的患者中,可以看到与PET所见的低代谢模式相似的低灌注模式。脑肿瘤ASL研究表明,ASL测量的CBF增加区域与动态磁敏感增强灌注(DSC)成像测量的脑血容量增加高度相关。ASL用于脑肿瘤成像的主要优点是CBF测量不受血脑屏障破坏及其定量性质的影响,便于多中心和纵向研究。本文发表在Neuroradiology杂志。

    05

    影像组学初学者指南

    影像组学是放射学领域的一个相对较新的词,意思是从医学图像中提取大量的定量特征。人工智能(AI)大体上被定义为一组先进的计算算法,可以对所提供的数据模式进行学习,以便对未知的数据集进行预测。由于与传统的统计方法相比,人工智能具有更好的处理海量数据的能力,因此可以将影像组学方法与人工智能结合起来。总之,这些领域的主要目的是提取和分析尽可能多和有意义的深层定量特征数据,以用于决策支持。如今,影像组学和人工智能都因其在各种放射学任务中取得的显著成功而备受关注,由于担心被人工智能机器取代,大多数放射科医生对此感到焦虑。考虑到计算能力和大数据集可用性的不断发展进步,未来临床实践中人与机器的结合似乎是不可避免的。因此,不管他们的感受如何,放射科医生都应该熟悉这些概念。我们在本文中的目标有三个方面:第一,让放射科医生熟悉影像组学和人工智能;第二,鼓励放射科医生参与这些不断发展的领域;第三,为未来方法的设计和评估提供一套良好实践建议。本文发表在Diagnostic and Interventional Radiology杂志。

    02

    看机器学习和商业智能如何改善医疗保健的

    商业智能概念,如描述性,诊断性,预测性和规范性分析,听起来像医学术语,实际上可以用于挽救生命的医疗保健方式。 在以患者和以人为中心的医疗保健领域,我们对机器学习和商业智能如何改善患者护理以及节省宝贵时间和资源的理解才刚刚开始被发现。机器可以了解病人并帮助病人的想法正在变得越来越广泛地被医疗领域所接受。对许多人来说,这似乎是外国的,甚至危险的概念。 同样,在一个致力于帮助人们变得更好并保持良好状态的行业中谈论“商业智能”似乎也很奇怪,也就是说,直到我们意识到商业智能概念像描述性,诊断性,预测性和规范性分析这些

    08

    Neuro-Oncology:对脑胶质瘤IDH突变状态进行分类的一种新型的基于MRI的全自动深度学习算法

    异柠檬酸脱氢酶(Isocitrate dehydrogenase, IDH)突变状态已成为神经胶质瘤的重要预后标志。当前,可靠的IDH突变诊断需要侵入性外科手术。该研究的目的是使用T2加权(T2w)MR图像开发高度精确的、基于MRI的、基于体素的深度学习IDH分类网络,并将其性能与基于多模态数据的网络进行比较。研究人员从癌症影像档案馆(The Cancer Imaging Archive,TCIA)和癌症基因组图谱(The Cancer Genome Atlas,TCGA)中获得了214位受试者(94位IDH突变,120位IDH野生型)的多参数脑MRI数据和相应的基因组信息。他们开发了两个单独的网络,其中包括一个仅使用T2w图像的网络(T2-net)和一个使用多模态数据(T2w,磁共振成像液体衰减反转恢复序列(FLAIR)和T1 postcontrast)的网络(TS-net),以执行IDH分类任务和同时进行单标签肿瘤分割任务。本文使用3D的Dense-UNets的架构。使用三折交叉验证泛化网络的性能。同时使用Dice系数评估算法分割肿瘤的精度。T2-net在预测IDH突变状态任务上表现出97.14%±0.04的平均交叉验证准确率,灵敏度为0.97±0.03,特异性为0.98±0.01,曲线下面积(AUC)为0.98±0.01。TS-net的平均交叉验证准确性为97.12%±0.09,灵敏度为0.98±0.02,特异性为0.97±0.001,AUC为0.99±0.01。T2-net的肿瘤分割Dice系数的平均得分为0.85±0.009,TS-net的肿瘤分割Dice系数的平均得分为0.89±0.006。

    05

    读文万卷015期:帕金森病内在脑功能网络动态异常;转移脑肿瘤治疗中血管形态的变化

    帕金森病是一种以黑质纹状体多巴胺缺失为特征的神经退行性疾病。先前利用静息状态功能磁共振成像测量自发脑活动的研究已经报道了广泛分布的全脑网络的异常变化。静息态功能连接假设扫描过程中的内在波动是稳定的,但有人提出功能连接的动态变化可以反映神经系统功能的各个方面,可以作为疾病的生物标记。本次介绍的文章是Jinhee Kim等人在Brain杂志发表的首次利用静息状态功能磁共振成像对帕金森病患者进行动态功能连接的研究,重点研究了功能连接状态的时间特性以及网络拓扑结构的可变性。采用组空间独立成分分析、滑动窗口方法和图论方法对31例帕金森病患者和23例健康对照者进行了研究。

    03

    Radiology:人工智能在神经肿瘤学中的新兴应用

    随着计算机算法呈指数式增长,人工智能(AI)方法有望提高医学诊断和治疗方法的精确度。影像组学方法在神经肿瘤学领域中的应用一直并可能继续处于这场革命的前沿。应用于常规和高级神经肿瘤学MRI数据的各种AI方法已经能够识别弥漫性胶质瘤的浸润边缘,区分假性进展和真实进展,并且比日常临床实践中使用的方法更好地预测复发和生存率。影像基因组学还将促进我们对癌症生物学的理解,允许以高空间分辨率对分子环境进行无创采样,从而能够对潜在异质性细胞和分子过程的系统理解。通过提供空间和分子异质性的体内标记物,基于人工智能的影像组学和影像基因组学工具有可能将患者分为更精确的初始诊断和治疗途径,并在个性化医疗时代实现更好的动态治疗监测。尽管仍存在重大挑战,但随着人工智能技术的进一步发展和临床应用的验证,在影像学实践中将发生巨大变化。

    03

    放射学中基于影像组学和人工智能预测癌症预后

    人工智能(AI)在医学影像诊断中的成功应用使得基于人工智能的癌症成像分析技术开始应用于解决其他更复杂的临床需求。从这个角度出发,我们讨论了基于人工智能利用影像图像解决临床问题的新挑战,如预测多种癌症的预后、预测对各种治疗方式的反应、区分良性治疗混杂因素与进展,肿瘤异常反应的识别以及突变和分子特征的预测等。我们综述了人工智能技术在肿瘤成像中的发展和机遇,重点介绍了基于人工的影像组学方法和基于深度学习的方法,并举例说明了它们在决策支持中的应用。我们还解决了临床应用过程中面临的挑战,包括数据整理和标注、可解释性以及市场监管和报销问题。我们希望通过帮助临床医生理解人工智能的局限性和挑战,以及它作为癌症临床决策支持工具所能提供的机会,为他们揭开影像组学人工智能的神秘面纱。

    02

    利用无创性头皮脑电图可以快速定位神经静默

    一种快速、经济、非侵入性的检测和表征神经静默的工具在诊断和治疗许多疾 病方面具有重要的益处。我们提出了一种名为SilenceMap的算法,用于使用非侵入性头皮脑电图(EEG)信号揭示电生理信号或神经静默的缺失。通过考虑不同来源对记录信号功率的贡献,并使用半球基线方法和凸谱聚类框架,SilenceMap允许使用相对少量的EEG数据快速检测和定位大脑中的静默区。SilenceMap在使用不到3分钟的脑电图记录(13、2和11 mm对25、62和53 mm)以及对基于真实人体头部模型的100个不同模拟静默区域(12±0.7 mm对54±2.2 mm)进行估计方面,大大优于现有的源定位算法。SilenceMap为可访问的早期诊断和持续监测人类皮质功能的改变的生理特性铺平了道路。 1.简述 本文利用数据相对较少的头皮脑电(EEG)信号,为神经静默的非侵入性检测提供了理论和实验支持。我们采用静默或静默区域这一术语来指代大脑组织中神经活动很少或没有活动的区域。这些区域反映缺血、坏死或病变组织、切除的组织(例如,癫痫手术后)或肿瘤。皮质扩散去极化(CSD)也出现动态静默区,这是大脑皮层缓慢传播的静默波。 脑电图被越来越多地用于诊断和监测神经疾病,如中风和脑震荡。用于检测脑损伤的常用成像方法(例如磁共振成像(MRI)或计算机断层扫描)不是便携式的,不是为连续(或频繁)监视而设计的,在许多紧急情况下难以使用,甚至可能在许多国家的医疗机构中不可用。然而,许多医学场景可以受益于便携式、频繁/持续的神经静默监测,例如,检测肿瘤或病变大小/位置和CSD传播的变化。然而,非侵入性头皮脑电图在紧急情况下可以广泛使用,甚至可以在现场部署,但只有几个限制。与其他成像方式相比,它安装简单快捷,携带方便,成本较低。此外,与MRI不同的是,EEG可以从体内植入金属物体的患者身上记录下来,例如起搏器。 源定位VS静默定位。脑电图的一个持续挑战是源定位,即根据头皮脑电图记录确定潜在神经活动的位置的过程。挑战主要来自三个问题:(i)问题的性质不明确(传感器很少,源的可能位置很多);(ii)大脑和头皮之间的距离和层的空间低通滤波效应;以及(iii)噪声,包括外部噪声、背景脑活动以及伪像,例如心跳、眼球运动和咬合下巴。在应用于神经科学数据的源定位范例中,例如在事件相关电位范例中,头皮EEG信号在事件相关试验上聚集以求出背景脑活动和噪声的平均值,从而允许提取跨试验一致的信号活动。静默区的定位带来了额外的挑战,其中最重要的是如何处理背景脑活动:虽然在源定位中它通常与噪声归为一类(例如,有文章指出:“脑电数据总是受到噪声的污染,例如,外源性噪声和背景脑活动”),在静默定位中,估计背景活动存在的位置是直接感兴趣的,因为静默定位的目标是将正常的大脑活动(包括背景活动)从异常静默中分离出来。因为源定位忽略了这种区别,正如我们在下面的实验结果中所展示的那样,经典的源定位技术,例如多信号分类(MUSIC)、MNE(MNE)和标准化低分辨率脑电磁层析成像(SLORETA),即使在适当的修改之后,也不能定位大脑中的静默(“方法”详细说明了我们对这些算法的修改)。 为了避免平均背景活动,我们估计了每个源对所有电极上记录的EEG的贡献。这一贡献是以平均功率感而不是平均值来衡量的,因此保留了背景脑活动的贡献。我们的静默定位算法,称为SilenceMap,估计这些贡献,然后使用工具量化我们对静默区域的假设(连续、静默区域的小尺寸,并且仅位于一个半球)来定位它。正因为如此,另一个不同之处出现了:静默定位可以使用更多的时间点(比典型的源定位)。例如,采样频率为512 Hz的160秒数据为SilenceMap提供了大约81,920个要使用的数据点,提高了信噪比(SNR),而源定位技术通常仅依赖于几十个与事件相关的试验来平均和提取跨试验一致的源活动。 此外,我们还面临两个额外的困难:缺乏背景脑活动的统计模型,以及参考电极的选择。第一种情况是通过包括基线记录(在没有静默的情况下;我们在实验结果中没有基线)或利用半球基线来处理第一种情况,即在相对于纵向裂缝对称放置的电极上测得的功率大致相等(见图1B)。虽然这里使用的半球基线提供了相当精确的重建,但我们注意到这个基线只是一个近似值,实际的基线有望进一步提高精度。第二个困难是相关的:为了在功率上保持这种近似的半球对称性,最好利用纵裂顶部的参比电极(见图1A)。利用这些改进,我们提出了一种迭代算法,使用相对较少的数据来定位大脑中的静默区。在模拟和真实数据分析中,SilenceMap在定位准确性方面优于现有的算法,该算法仅使用128个电极上160秒的脑电信号来定位三名接受手术切除的参与者的静默区域。 2.结果 SilenceMap通过两个步骤定位静默区:(1)第一步在低分辨率源网格中找到一个连续的静默区,假设在此分辨率下,源在空间上是不相关的。在这个低分辨率的网格中,

    02

    建立脑影像机器学习模型的step-by-step教程

    机器学习的日益普及导致了一些工具的开发,旨在使这种方法的应用易于机器学习新手。这些努力已经产生了PRoNTo和NeuroMiner这样的工具,这并不需要任何编程技能。然而,尽管这些工具可能非常有用,但它们的简单性是以透明度和灵活性为代价的。学习如何编程一个机器学习管道(即使是一个简单的)是一个很好的方式来洞察这种分析方法的优势,以及沿着机器学习管道可能发生的扭曲。此外,它还允许更大的灵活性,如使用任何机器学习算法或感兴趣的数据模式。尽管学习如何为机器学习管道编程有明显的好处,但许多研究人员发现这样做很有挑战性,而且不知道如何着手。

    05

    图像分割综述

    这一大部分我们将要介绍的是深度学习大火之前人们利用数字图像处理、拓扑学、数学等方面的只是来进行图像分割的方法。当然现在随着算力的增加以及深度学习的不断发展,一些传统的分割方法在效果上已经不能与基于深度学习的分割方法相比较了,但是有些天才的思想还是非常值得我们去学习的。 1.基于阈值的分割方法 阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。 阈值法特别适用于目标和背景占据不同灰度级范围的图。 图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。

    04

    SVM在脑影像数据中的应用

    如第一章所述,机器学习中有四种基本方法:有监督学习、无监督学习、半监督学习和强化学习。分类是监督学习的一种形式,它根据训练阶段确定的许多输入输出对将输入数据映射到输出数据。使用分类,与一组示例观察相关的特征可以用来训练一个决策函数,该函数以给定的精度生成类别赋值(即标签labels)。从功能性神经成像数据到推特帖子,这些特征可以是多种多样的。一旦基于这些特征创建了决策函数分类器,它就可以使用之前建立的模式自动将类标签附加到新的、不可见的观察结果上。有许多类型的机器学习算法可以执行分类,如决策树,朴素贝叶斯和深度学习网络。本章回顾支持向量机(SVM)学习算法。支持向量机的强大之处在于它能够以平衡的准确性和再现性学习数据分类模式。虽然偶尔用于回归(见第7章),SVM已成为一种广泛使用的分类工具,具有高度的通用性,扩展到多个数据科学场景,包括大脑疾病研究。

    04
    领券