在这个维度模型中,您可以改进以下几个方面:
腾讯云相关产品和产品介绍链接地址:
在月度的人力资源数据分析中,我们永远绕不开岗位的绩效数据分析,在月底会对于各个岗位的员工进行绩效的数据建模和分析,那如何对岗位员工进行数据建模,我们从哪几个维度来做绩效的分析,最终通过绩效改进和绩效辅导来提升员工的岗位技能,今天我们从绩效数据分析的思维来聊一聊绩效模块的分析。
如何全面把握系统现状,以便在关键时刻做出明智的决策?这是很多负责全局稳定性的管理者深感关切的问题。基于这一背景,同时也为了寻求提升研发工作效率提升,去哪儿网构建了一套数字化质量度量体系,以此来更精确地度量、管理并提升系统稳定性。
TENER: Adapting Transformer Encoder for Name Entity Recognition
NIPS 2022不乏Vision Transformer相关的文章,今天从其中选择3篇典型的文章分享给大家。这三篇文章是对Vision Transformer三个不同方向的改进:模型结构的改进、数据层面的改进、训练方式上的改进。通过这三篇文章、三个方面的文章,了解目前Vision Transformer的业内最新进展。
2、为什么需要数据模型:数据模型不是必需的,建模的目的是为了改进业务流程、消灭信息孤岛和数据差异及提升业务支撑的灵活性。
什么是数据模型 为什么需要数据模型 如何建设数据模型 最后,我们在本文的结尾给大家介绍了一个具体的数据仓库建模的样例,帮助大家来了解整个数据建模的过程。
基于 Transformer 的大型语言模型(LLM)已经展现出执行上下文学习(ICL)的强大能力,并且几乎已经成为许多自然语言处理(NLP)任务的不二选择。Transformer 的自注意力机制可让训练高度并行化,从而能以分布式的方式处理长序列。LLM 训练所用的序列的长度被称为其上下文窗口。
YOLO V2的原始论文是,《YOLO9000: Better, Faster, Stronger 》,新的YOLO版本论文全名叫“YOLO9000: Better, Faster, Stronger”,主要有两个大方面的改进:
作者会在本文中结合自己在视频推荐方面的工作经验,着重从工程实现方面,讲述如何对特征进行评估的问题。下文中,我们首先会厘清“特征评估”的概念,然后讲述特征评估的标准,最后是问题的反向排查。
On the Universality of Coupling-based Normalizing Flows 2402.06578v1 基于耦合的归一化流的普适性
之前我们已经学过了许多的前馈网络. 所谓前馈网络, 就是网络中不会保存状态. 然而有时 这并不是我们想要的效果. 在自然语言处理 (NLP, Natural Language Processing) 中, 序列模型是一个核心的概念. 所谓序列模型, 即输入依赖于时间信息的模型. 一个典型的序列模型是隐马尔科夫模型 (HMM, Hidden Markov Model). 另一个序列模型的例子是条件随机场 (CRF, Conditional Random Field).
Zachman框架(Zachman Framework™)是一个纲目(schema)——两种有几千年历史的分类法的交集。第一种是建立在原始疑问词上的沟通基础要素:什么、如何、何时、何人、何地以及为何。这些问题答案的集成,能够对复杂的想法形成全面、综合的描述。第二种来自具体化,即古希腊哲学中假定的抽象观念到实例的转换,在Zachman框架中记为:辨别、定义、表达、规定、配置和实例化。
例如,对于DETR,Conditinal-DETR,DAB-DETR和DN-DETR,性能提升分别为2.4 AP,2.5 AP,1.9 AP和1.6 AP。作者希望作者的工作能引起检测领域对当前DETR-like模型的定位Bottleneck的关注,并突出了RefineBox框架的潜力。 代码和模型:https://github.com/YiqunChen1999/RefineBox
2021年7月14日,由中国电子技术标准化研究院(简称:“电子标准院”)归口的《系统与软件工程,开发运维一体化,能力成熟度模型》国家标准研讨会在杭州网易大厦正式启动,为期3天。 此次会议共有包括电子标准院、南京大学、华为、网易、工商银行、中国商飞北研中心、腾讯、神州信息、军事科学院、震兑等15家单位的近40位专家代表参与。 《系统与软件工程,开发运维一体化,能力成熟度模型》国家标准的制定将在充分吸收软件工程、项目管理、产品管理、组织治理、质量管理、卓越绩效管理、精益软件开发等领域的优秀
技术升级快于我们的想象,今天的故事在明天来看就是一种常识。对于数仓而言,又何尝不是?互联网的发展,导致大数据的人才缺口。互联网公司雨后春笋,传统行业机巧转身。短短几年,数据行业已沧海桑田。今天谈大数据已不复当年雾里看花的景象,它像一列更高速的快车,和老前辈们一样,向自己的终点加速。
作者:Robert Glenn,埃森哲的 CNCF Cartografos 工作组创始成员
在许多应用中,移动机器人必须在特定的环境中执行自主导航。在移动过程中,机器人应能够识别或区分环境中的不同区域。这个行为相当于在其当前的传感器观测与存储数据库的一部分之间找到对应关系。这种能力通常被称为地点识别。为了加快这一过程,作者们经常专注于通过不变描述子来描述环境的一些部分。通过这种方式,机器人应该能够通过在数据库中找到与其当前观测相关联的描述子最相似的描述子来识别环境的一部分。地点识别的概念在诸如定位、建图和导航等任务中至关重要。
本文分享一篇发表在ICLR’21的推荐系统方向的文章:推荐系统中可学习的嵌入维度。
本文作者是一名数据科学家,现在离开了Pivotal公司加入了idealo公司,正在帮助其搭建数据科学团队以及把机器学习整合到公司的产品中。
之前我解析过RWKV-4的结构和代码实现(https://zhuanlan.zhihu.com/p/653327189),这里再把它和RWKV5,RWKV6放在一起进行对比解析一下。
最近听到大家说的最多的话就是,在工作中总是没有数据分析思路,我应该怎么办呢?今天就来给大家分享一下,如何锻炼自己的数据思维,还有实例模型讲解哦~
【导读】在基于检索的问答系统中,很重要的一步是将检索到的答案进行排序得到最佳的答案。在检索到的答案比较短时,对答案进行排序也成为了一个难题。使用深度学习的方法,如建立在卷积神经网络和长期短期记忆模型基础上的神经网络模型,不需要手动设计语言特征,也能自动学习问题与答案之间的语义匹配,但是缺陷是需要词汇重叠特征和BM25等附加特征才能达到较好的效果。本文分析了出现这个问题的原因,并提出了基于值的权值共享的神经网络,并使用注意力机制为问题中的值赋予不同的权值。专知内容组编辑整理。 论文: aNMM: Rankin
在这片博客中,我将介绍队友(Aron,Ashish,Gabriel)和我如何完成我们的第一个机器学习项目。写这篇博客的目的是为了记录——记录下我作为一名有抱负的数据科学家的旅程。同时,这篇博客也是为了写下逐步完善预测模型背后的思维和推理过程。由于我的目的是建立一个可以快速使用的通用工作流程,所以我将尽可能的简化推理过程。我的最终目标是当某一天再次回顾这个数据集时,可以应用更好的预测模型,看到自己原本可以做出哪些改进,并且能看到自己作为一个数据科学家的成长。
AI 科技评论按:在计算机视觉领域中,多维度目标检测一直被用作输入以生成反映不同维度信息的特征组合,这种办法能够有效表达图片上的各种维度特征,然而却对硬件计算能力及内存大小有较高要求,因此只能在有限的领域内部使用。Facebook 于 2016 年在论文《Feature Pyramid Networks for Object Detection》中提出的 FPN,通过利用常规 CNN 模型内部从底至上各个层对同一 scale 图片不同维度的特征表达结构,提出了一种可有效在单一图片视图下生成对其的多维度特征表达的方法。近期,Facebook 和谷歌接连发布了基于 FPN 的改进工作,我们将之整理如下。
近日,PyTorch 社区又添入了「新」工具,包括了更新后的 PyTorch 1.2,torchvision 0.4,torchaudio 0.3 和 torchtext 0.4。每项工具都进行了新的优化与改进,兼容性更强,使用起来也更加便捷。PyTorch 发布了相关文章介绍了每个工具的更新细节,AI 开发者将其整理与编译如下。
大语言模型(Large Language Model,LLM)的进展促进了 AI 智能体(特别是 LLM 智能体)的蓬勃发展。在通往通用人工智能的道路上,AI 智能体将有能力在无人监管的情况下进行自主思考与决策。然而,较少有研究者关注如何在未来无人监管的情况下,防止 AI 智能体被欺骗和误导。由于人类社会中存在很多误导和欺骗性的信息,如果 AI 智能体无法有效识别和应对这些信息,可能会在未来造成不可估量的后果。
近期,机器人技术和自动驾驶系统利用实时的深度传感器,如激光雷达(LiDARs),来实现三维感知。激光雷达产生的点云可以提供丰富的几何信息,并帮助机器理解环境感知。早期方法集中于从静态点云中解析现实世界,忽略了时间变化。为了更好地理解时间变化的世界,近期研究更专注于在4D空间理解点云视频,包括三个空间维度和一个时间维度。已有几项工作在4D点云建模方面取得进展。这些方法要么旨在设计改进的网络来建模4D点云,要么采用自监督方法来提高4D点云表示的效率。
commaai的自动驾驶深度网络中,用到了两种深度网络技术,分别是VAE和GAN, Generative Adversarial Networks (GANs) 这个我们在上面讨论过了,给出一个训练过程作为两个不同的网络的博弈:一个生成器网络(如上)和一个判别器网络尝试分类样本为来自真实分布 $p(x)$ 和模型分布 $\hat{p}(x)$. 每次判别器注意到两个分布之间的差异生成器微微调整了自己的参数,直到最后(理论上)生成器准确地重新制造真实数据分布,判别器随机猜测并不能找到差异. Variation
在做人力资源数据分析的过程中,很多HR的小伙伴都在追求数据分析如何支持业务,数据分析的结果,数据分析的解决方案如何给业务进行赋能,提升业务的岗位技能,最终提升业务的绩效。
最近在知乎看到一个非常有意思的问题,『为什么没有做batch attention的?』今天就分享一篇相关的顶会论文~
论文地址:Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models’ Alignment
1、摘要 在目标检测中,定位和分类相结合的复杂性导致了方法的蓬勃发展。以往的工作试图提高各种目标检测头的性能,但未能给出一个统一的视图。在本文中,我们提出了一种新的动态头网络框架,以统一目标检测头部与注意。该方法通过将特征层次间、空间位置间、任务感知输出通道内的多自注意机制相结合,在不增加计算开销的情况下显著提高了目标检测头的表示能力。进一步的实验证明了所提出的动态头在COCO基准上的有效性和效率。有了标准的ResNeXt-101-DCN主干网,我们在很大程度上提高了性能,超过了流行的目标检测器,并在54.0 AP达到了新的最先进水平。此外,有了最新的变压器主干网和额外的数据,我们可以将当前的最佳COCO结果推至60.6 AP的新记录。 2、简介 物体检测是回答计算机视觉应用中“什么物体位于什么位置”的问题。在深度学习时代,几乎所有现代目标检测器[11,23,12,35,28,31,33]都具有相同的范式——特征提取的主干和定位和分类任务的头部。如何提高目标检测头的性能已成为现有目标检测工作中的一个关键问题。 开发一个好的目标检测头的挑战可以概括为三类。首先,头部应该是尺度感知的,因为多个具有极大不同尺度的物体经常共存于一幅图像中。其次,头部应该是空间感知的,因为物体通常在不同的视点下以不同的形状、旋转和位置出现。第三,头部需要具有任务感知,因为目标可以有不同的表示形式(例如边界框[12]、中心[28]和角点[33]),它们拥有完全不同的目标和约束。我们发现最近的研究[12,35,28,31,33]只关注于通过各种方式解决上述问题中的一个。如何形成一个统一的、能够同时解决这些问题的头,仍然是一个有待解决的问题。 本文提出了一种新的检测头,即动态头,将尺度感知、空间感知和任务感知结合起来。如果我们把一个主干的输出(即检测头的输入)看作是一个具有维级×空间×通道的三维张量,我们发现这样一个统一的头可以看作是一个注意学习问题。一个直观的解决方案是在这个张量上建立一个完整的自我注意机制。然而,优化问题将是太难解决和计算成本是不可承受的。 相反地,我们可以将注意力机制分别部署在功能的每个特定维度上,即水平层面、空间层面和渠道层面。尺度感知的注意模块只部署在level维度上。它学习不同语义层次的相对重要性,以根据单个对象的规模在适当的层次上增强该特征。空间感知注意模块部署在空间维度上(即高度×宽度)。它学习空间位置上的连贯区别表征。任务感知的注意模块部署在通道上。它根据对象的不同卷积核响应指示不同的特征通道来分别支持不同的任务(如分类、框回归和中心/关键点学习)。 这样,我们明确实现了检测头的统一注意机制。虽然这些注意机制分别应用于特征张量的不同维度,但它们的表现可以相互补充。在MS-COCO基准上的大量实验证明了我们的方法的有效性。它为学习更好的表示提供了很大的潜力,可以利用这种更好的表示来改进所有类型的对象检测模型,AP增益为1:2% ~ 3:2%。采用标准的ResNeXt-101-DCN骨干,所提出的方法在COCO上实现了54:0%的AP新状态。此外,与EffcientDet[27]和SpineNet[8]相比,动态头的训练时间为1=20,但表现更好。此外,通过最新的变压器主干和自我训练的额外数据,我们可以将目前的最佳COCO结果推至60.6 AP的新纪录(详见附录)。 2、相关工作 近年来的研究从尺度感知、空间感知和任务感知三个方面对目标检测器进行了改进。 Scale-awareness. 由于自然图像中经常同时存在不同尺度的物体,许多研究都认为尺度感知在目标检测中的重要性。早期的研究已经证明了利用图像金字塔方法进行多尺度训练的重要性[6,24,25]。代替图像金字塔,特征金字塔[15]被提出,通过将下采样卷积特征串接一个金字塔来提高效率,已经成为现代目标检测器的标准组件。然而,不同层次的特征通常从网络的不同深度中提取,这就造成了明显的语义差距。为了解决这种差异,[18]提出了从特征金字塔中自下而上的路径增强较低层次的特征。后来[20]通过引入平衡采样和平衡特征金字塔对其进行了改进。最近,[31]在改进的三维卷积的基础上提出了一种金字塔卷积,可以同时提取尺度和空间特征。在这项工作中,我们提出了一个尺度感知注意在检测头,使各种特征级别的重要性自适应的输入。 Spatial-awareness. 先前的研究试图提高物体检测中的空间意识,以更好地进行语义学习。卷积神经网络在学习图像[41]中存在的空间变换方面是有限的。一些工作通过增加模型能力(大小)[13,32]或涉及昂贵的数据扩展[14]来缓解这个问题,这导致了在推理和训练中极高的计算成本。随后,提出了新的卷积算子来改进空间变换的学习。[34]提出使用膨胀卷积来聚合来自指数扩展的接受域的上下文信息。[7]提出了一种可变形的卷积来对具有额外自学习偏移量的
微服务参考模型梳理了产品在微服务实施过程中的适用性评估、成熟度参考、度量体系以及能力提升计划,旨在帮助团队尽早识别微服务实施过程中的风险,并有效地推进微服务相关实践的落地。
今天学习的是谷歌大脑的同学 2017 年的工作《Neural Message Passing for Quantum Chemistry》,也就是我们经常提到的消息传递神经网络(Message Passing Neural Network,MPNN),目前引用数超过 900 次。
由于卷积神经网络(CNN)在从大规模数据中学习可概括的图像先验方面表现良好,因此这些模型已被广泛应用于图像恢复和相关任务。最近,另一类神经架构Transformers在自然语言和高级视觉任务上表现出显着的性能提升。虽然Transformer模型减轻了CNN的缺点(即,有限的接收场和对输入内容的不适应性),其计算复杂度随着空间分辨率二次增长,因此使得其不可行地应用于涉及高分辨率图像的大多数图像恢复任务。
自从我一年前加入Quora,我一直在谈论在这里的所有的非常有趣的关于机器学习的挑战。然而,当我上周参加并在MLConf发言时,我很惊讶,许多和我谈过的人仍然没有听说我们在做什么。 在这篇文章中,我将简要总结一些好的要点,让你了解更多。
关于MySQL的拓扑关系,最近是比较困扰我的,主要是因为最近在思考重构元数据层面的一些东西,发现原来的一些设计方式已经不能够支持现在的业务特点了。
本文首发于 【集智书童】,白名单账号转载请自觉植入本公众号名片并注明来源,非白名单账号请先申请权限,违者必究。
这是一个初步的概览面板,能够通过这个面板实现大部分的慢日志提取需求,目的是能够通过可视化的方式更全面的展示慢日志的信息,如下:
留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考查进行初始行为后的用户中,有多少人会进行后续行为。这是衡量产品对用户价值高低的重要指标。
近年来,生成式人工智能取得了快速发展,在多模态理解和代码生成方面展现前所未有的能力。为此,斯坦福、微软等研究人员提出了利用多模态大模型进行前端开发,制定了一个「Design2Code测试基准」,并开发了一套「多模态提示方法」,实验表明64%的生成网页要比原始参考网页要好,49% 的生成网页可以直接取代原本的网;除此之外还发布了一个开源「网页代码生成模型:Design2Code-18B」,其效果堪比Gemini Pro Vision 。
在目标检测中,实时性和精确性的trade-off至关重要,YOLOv3是目前为止在这方面做得比较好的算法。通过高斯分布的特性,改进YOLOv3使得网络能够输出每个检测框的不确定性,从而提升了网络的精度。
在计算广告和推荐系统中,点击率(Click Through Rate,以下简称CTR)预估是一个重要问题。在CTR预估任务中(以下简称CTR任务),我们通常利用user信息、item信息和context信息来预测user对item的CTR。
本文需要的前序知识储备是:循环神经网络RNN,词向量WordEmbedding,门控单元VanillaRNN/GRU/LSTM。
词嵌入是一种由真实数字组成的稠密向量,每个向量都代表了单词表里的一个单词。 在自然语言处理中,总会遇到这样的情况:特征全是单词!但是,如何在电脑上表述一个单词呢?你在电脑上存储的单词的ascii码,但是它仅仅代表单词怎么拼写,没有说明单词的内在含义(你也许能够从词缀中了解它的词性,或者从大小写中得到一些属性,但仅此而已)。 更重要的是,你能把这些ascii码字符组合成什么含义?当
导读:本文主要介绍深度CTR经典预估模型的演化之路以及在2019工业界的最新进展。
领取专属 10元无门槛券
手把手带您无忧上云