首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我怎样才能让facet_wrap正确地使用这个有序的堆叠面积图呢?

要让facet_wrap正确地使用有序的堆叠面积图,你可以按照以下步骤进行操作:

  1. 确保你的数据集中有一个用于堆叠的变量,例如"category"。
  2. 确保"category"变量是有序的,可以通过将其转换为有序因子来实现。你可以使用R语言中的factor()函数,并指定levels参数来指定顺序。
  3. 在绘制堆叠面积图之前,确保你已经加载了相关的包,例如ggplot2。
  4. 使用ggplot()函数创建一个基础图形对象,并指定数据集和x、y轴变量。
  5. 使用geom_area()函数来绘制堆叠面积图。在aes()函数中,将"category"变量指定为fill参数,以实现堆叠效果。
  6. 使用facet_wrap()函数来创建多个面板,每个面板对应一个不同的"category"值。在facet_wrap()函数中,将"category"变量指定为变量参数。
  7. 可以根据需要自定义图形的其他属性,例如添加标题、坐标轴标签等。
  8. 最后,使用print()函数打印图形对象,或使用其他保存图形的方法。

以下是一个示例代码:

代码语言:txt
复制
# 加载所需的包
library(ggplot2)

# 创建一个有序的堆叠面积图
data <- data.frame(
  x = 1:10,
  y = c(3, 5, 4, 6, 8, 7, 9, 6, 5, 4),
  category = factor(c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J"), levels = c("J", "I", "H", "G", "F", "E", "D", "C", "B", "A"))
)

# 创建基础图形对象
p <- ggplot(data, aes(x = x, y = y))

# 绘制堆叠面积图
p <- p + geom_area(aes(fill = category))

# 创建多个面板
p <- p + facet_wrap(~ category)

# 自定义图形属性
p <- p + labs(title = "有序的堆叠面积图", x = "X轴", y = "Y轴")

# 打印图形对象
print(p)

这样,你就可以得到一个正确使用有序的堆叠面积图的图形。请注意,这只是一个示例,你可以根据自己的数据和需求进行相应的调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

谷歌Material Design可视化数据设计规范指南

大家好,我是才哥。 今天为大家分享谷歌的Material Design可视化数据设计规范指南,这个规范指南基本适用所有数据图表设计,很有参考价值,建议收藏。...这是为什么呢?...· 柱状图(条形图)使用共同的基线,通过条形长度表示数量 · 饼图使用圆的圆弧或角度表示整体的一部分 柱状图(条形图),折线图和堆叠面积图在显示随时间的变化方面比饼图更有效地。...面积图 面积图有多种类型,包括堆叠面积图和层叠面积图: · 堆叠面积图显示多个时间序列(在同一时间段内)堆叠在一起 · 层叠面积图显示多个时间序列(在同一时间段内)重叠在一起 层叠面积图建议不要使用超过两个时间序列...取而代之,应当使用堆叠面积图来比较一个时间间隔内的多个值(横轴表示时间)。 样式 数据可视化使用自定义样式和形状,使数据更容易理解,以适合用户需求。

3.9K21
  • 科研绘图你值得注意的14个点 (2)

    这通过将圆分成若干扇区实现,所有扇区加起来构成一个完整的圆。然而,饼状图因人类在识别角度和面积上的能力远不如识别长度而受到批评。 以这个例子来说,我们有两个大类,每个大类下有4个子类。...但如果我们想用长度来展示数据,为什么不直接将环状图展开,制作成堆叠条形图呢?在堆叠条形图中,条形并排展示,这样跨组比较就变得容易多了。 11....的选择是直接展开圆环图,制作一个传统的堆叠条形图。顺便提一下,这也是我对 Circos 图和其他圆形图表布局的主要顾虑。 12....许多科学软件仍旧默认使用红/绿色或彩虹色系,这让我感到非常困扰。更“先进”的色系,比如 viridis,不仅对色觉异常者友好,而且在灰度打印下也能保持信息的完整性(如图中的第三行所示)。...由于样本和类别众多,如果不对条形图的顺序进行优化,很难从图表中看出任何信息。我在看什么?优化条形图的顺序后,哇,这真的让图表变得清晰多了,不是吗? 14.

    9610

    ggplot2:堆叠柱状图

    下面是墨眉 《共享我们的大脑 》 的投稿 全部的代码都是复制粘贴即可运行 在数据展示时为了体现各因素的比重(百分比),有时会用到堆叠柱状图,这里介绍下用 ggplot2 画堆叠柱状图的代码和相应的美化方法...一、数据准备 为了省事我加载了R自带的一个数据框,有30个样本,7个观测值 data_test = datasets::attitude # 这个数据长这样,很普通,普普通通 ?...# 因为后面想要做百分比的堆叠柱状图,先查看这个数据适不适合 statistics = apply(data_test, 1, sum) # 得到每个样本的观测值总和 plot(statistics...四、观测值和样本排序 然后是排序的问题,如果我想调整不同类型柱子的顺序,让他们按大小排序,可以用factor 函数 order_x = apply( data_percent[,1:7], 2, sum...其他可用的调整 # 可以考虑分组展示 p3 + facet_wrap(~group, scales = 'free', nrow = 2) ?

    7.6K41

    阿榜的生信笔记6-R作图

    哈喽,我是学习生物信息学的阿榜!非常感谢您能够点击进来查看我的笔记。我致力于通过笔记,将生物信息学知识分享给更多的人。如果有任何纰漏或谬误,欢迎指正。让我们一起加油,一起学习进步鸭?...这份思维导图可以让大家更容易地了解笔记里面的内容哦?...: 大家记住哦,画图是让自己的数据可视化 我给大家介绍下常见的可视化R包: 一、基础绘图函数 ①、复习plot()函数 提个小问题:图中6.5和4是什么?...,这是基本语法格式 ggplot2与其他包语法有些不同: 2、属性设置,太多了,大家需要使用的时候再来看看吧?...3、映射(重点哦) 关键词:数据框、某一列、图的某个属性 按照上述模板一一对应观察,你能找出他们的规律✌ ①、映射设置 提个小问题:一个color的实际参数有引号,另一个color的实际参数没有引号,这是为什么呢

    58370

    数据可视化设计指南

    排序图表包括: 1.有序条形图 2.有序柱形图 3.平行坐标图 占比图表 部分与整体之间的比较,显示了同一纬度下的数据占比情况。 用例包括: 不同产品收入占比分析 企业部门预算分析 ?...占比图表包括: 1.堆叠的条形图 2.饼图 3.甜甜圈图 4.堆积的面积图 5.矩形树图 6.旭日图 相关性图表 相关性图表显示两个或多个变量之间的相关性。...由于这三个图表使用同一个Y轴,因此比较他们之间的数据差异更加容易。 ? 允许。 使用条形图表示随时间变化的趋势或各个类别之间的差异(这个图X轴为数据数值,Y轴为日期)。 ? 禁止。...面积图 面积图有几种类型,包括堆叠面积图和重叠面积图: 堆叠面积图显示了多个数据类别(在同一时间段内)彼此堆叠 重叠面积图显示了多个数据类别(在同一时间段内)彼此重叠 这两个图的区别在于堆叠面积图是各个类别数据叠加显示...取而代之的是,使用堆叠面积图来比较一个时间维度内的多个数据类别(水平轴表示时间)。 ? 允许。 使用堆叠面积图表示多个数据,能够保持良好的可读性。3个类别的数据堆叠显示 ? 禁止。

    6.2K31

    Pandas数据可视化

    也可以用来展示《葡萄酒杂志》(Wine Magazine)给出的评分数量的分布情况:  如果要绘制的数据不是类别值,而是连续值比较适合使用折线图 : 柱状图和折线图区别 柱状图:简单直观,很容易根据柱子的长短看出值的大小...,易于比较各组数据之间的差别 折线图: 易于比较各组数据之间的差别; 能比较多组数据在同一个维度上的趋势; 每张图上不适合展示太多折线  面积图就是在折线图的基础上,把折线下面的面积填充颜色 : 直方图...如果分类比较多,必然每个分类的面积会比较小,这个时候很难比较两个类别 如果两个类别在饼图中彼此不相邻,很难进行比较  可以使用柱状图图来替换饼图 Pandas 双变量可视化 数据分析时,我们需要找到变量之间的相互关系...,价格20美元 Hexplot和散点图可以应用于区间变量和/或有序分类变量的组合。 ...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是

    13210

    Google数据可视化团队:数据可视化指南(中文版)

    显示随时间的变化 可以使用时间序列图表来表示随时间的变化,就是按时间顺序表示数据点的图表。表示随时间变化的图表包括:折线图,柱状图(条形图)和面积图。 ? *基线值是y轴上的起始值。...· 柱状图(条形图)使用共同的基线,通过条形长度表示数量 · 饼图使用圆的圆弧或角度表示整体的一部分 柱状图(条形图),折线图和堆叠面积图在显示随时间的变化方面比饼图更有效地。...面积图 面积图有多种类型,包括堆叠面积图和层叠面积图: · 堆叠面积图显示多个时间序列(在同一时间段内)堆叠在一起 · 层叠面积图显示多个时间序列(在同一时间段内)重叠在一起 层叠面积图建议不要使用超过两个时间序列...取而代之,应当使用堆叠面积图来比较一个时间间隔内的多个值(横轴表示时间)。 ? 样式 数据可视化使用自定义样式和形状,使数据更容易理解,以适合用户需求。...平移 平移让用户能够看到屏幕之外的界面。它应该合理的展示数据的价值。例如,如果图表的一个维度比另一个维度更重要,则平移的方向可以仅限于该维度。 · 平移通常与缩放功能同时使用。

    5.2K31

    手把手教你画:轮播图

    你好,我是 zhenguo 这是我的第488篇原创 今天讨论轮播图。 轮播图经常用于大屏展示、PPT汇报等,Pyecharts能非常方便的实现这个功能。...今天基于前天绘制的堆叠面积图(stack area line),咱们绘制一个轮播图,手把手展示如何绘制轮播图。 绘制原理 轮播图,顾名思义,至少得有2帧,轮训每一帧,这样才能形成轮播的效果。...因此,在知道如何绘制一幅堆叠面积图后,再绘制两幅肯定就不是问题。 然后把它们按照顺序添加到轮播图对象中,渲染到html文件中。 以上就是Pyecharts绘制轮播图的基本过程。...绘制过程 在前天绘制的堆叠面积图代码基础上,需要增加导入Timeline类,它提供轮播图的绘制能力。...,我录制一个gif动态效果图:

    57620

    二、基础平滑、面积折线图与折线堆叠、面积堆叠《手把手教你 ECharts 数据可视化详解》

    : 二、基础面积图 打开官方折线图示例,找到基础面积图: 点开后,找到 option ,其配置如下: option = { xAxis: { type: 'category',...: 三、折现堆叠图 接下来我们开始 折线堆叠图的学习,打开 ECharts 官方示例,点击折线图堆叠: 进入后我们发现这些配置项明显变多了: 此时不要着急,咱们将会讲解每个配置项的作用及配置方法...图表溢出则会导致某些数据显示不全,在这里使用 ontainLabel: true 则会让图标显示完整。...stack 堆叠 接下来就来讲解堆叠图表的重点 stack 配置,不过由于 stack 在折线图中可能没有柱状图这么明显,在此若不能很清楚含义的可以在之后讲到柱状图时再理解也可以。...四、堆叠面积图 接下来咱们开始堆叠面积图的讲解,打开官方示例后点击堆叠面积图后点击进入: 此时整个 option 如下: option = { title: { text: 'Stacked

    2.8K20

    使用patchwork进行拼图的一些细节

    说到拼图,那必须得好好学习patchwork包,这个包是Thomas大佬的作品,一经推出就火了,迅速取代了R中其他的拼图包。...大佬很强,除了这个包,还有很多好用的包都是他开发的,比如gganimate/ggraph/tidygraph/ggforce等,是不是也有一些你常用的包呢。...简单拼图 嵌套拼图 和非`ggplot2`对象拼图 堆叠和成组 快速拼很多图 修改子图形 修改全部子图形 控制整体布局 增加空白占位图形 控制行列数 行列的精细控制 Fixed aspect plots...使用自定义布局达到对行列数的精细控制。..., plot.tag = element_text(size = 8, hjust = 0, vjust = 0)) plot of chunk unnamed-chunk-47 使用自定义列表的形式为不同的子图安排不同的序号

    5.2K40

    【数据可视化】Echarts最常用图表

    itemStyle代码块设置了柱子堆叠部分或堆叠部分边框的颜色,将每根柱子堆叠部分的颜色设置为透明色。...4.1 绘制堆积面积图和堆积折线图 堆积折线图的作用是用于显示每一数据所占大小随时间或有序类别而变化的趋势,展示的是部分与整体的关系。 堆积面积图是在折线图中添加面积图,属于组合图形中的一种。...以周三的数据为例,堆叠面积图实际显示的是:手机=456,冰箱=456+391=847,空调=847+331=1178,电视=1178+333=1511,其它=1511+432=1943。...当使用半径模式时,以各个item的值作为扇形的半径,一般情况下,半径模式可能造成较大的失真;当使用面积模式时,以各个item的值作为扇形的面积,一般情况下,面积模式的失真较小。...事实上和许多图表一样,玫瑰图也有一些不足之处。玫瑰图的使用注意事项如下。 (1)适合展示类目比较多的数据。通过堆叠,玫瑰图可以展示大量的数据。

    54010

    Matplotlib时间序列型图表(1)

    时间序列图简介 时间序列图强调数据随时间的变化规律或趋势,X轴一般为时序数据,Y轴为数值型数据,包括了折线图、面积图、雷达图、日历图、柱形图等。...() ---- 2 面积图 面积图是在折线图的基础之上生成的,它将折线图中折线与自变量坐标轴之间的区域用颜色或纹理填充,可以更好突出趋势信息。...面积图的语法和常见参数解释如下: #(x, y1)是数据标签,y2是起始基准位置,若y2为0,则表示x轴与y1之间的面积 #facecolor是填充颜色,edgecolor是面积边缘线框颜色,label...1017A站点在2020年的PM2.5浓度值用面积表示,再绘制一个二类标签的面积图。...在plotnine中进行绘制月日历图时,使用geom_tile()函数来绘制每日的”瓦片“,借助facet_wrap()函数分面绘制逐月的图像。关键在于月、周、日数据的转换。

    2.3K20

    图表(Chart & Graph)你真的用对了吗?

    数据可视化主要是借助图形化的方法,清晰有效的展示数据,让关系繁杂的数据变得一目了然,数据趋势变得明显,数据内在关系变得明确。 数据可视化的第一步就是选择选择合适的图表类型。...这种图表类型主要用于展示数据的所有组成部分,例如各省份的数据合在一起组成全国数据。 有以下几种图表类型,展示数据的组成: 饼状图 堆叠条形图 堆叠柱形图 面积图 瀑布图 3. ...为两个数据集使用对比色。 5)面积图 面积图基本上是一条线图,但X轴和线之间的空间用颜色或图案填充,用于显示局部和整体的关系,可以帮助分析总体趋势和单个数据趋势。...设计面积图的最佳做法: 使用透明的颜色 ,使Y轴标签不被遮蔽。 最多显示4个数据,以免产生混淆。 图表顶部的数据是高度可变的,方便阅读。...6)堆叠条形图 这种图表用于比较多个不同的数据集,并显示每个被比较的数据集的组成。 设计堆叠条形图的最佳做法: 最适用于说明部分和整体的关系。 使用对比色,会使对比更加清晰。

    2.4K10

    60种常用可视化图表的使用场景——(上)

    跟折线图一样,面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势,而非表示具体数值。 两种较常用的面积图是分组式面积图和堆叠式面积图。...分组式面积图在相同的零轴开始,而堆叠式面积图则从先前数据系列的最后数据点开始。...推荐的制作工具有:D3、Datamatic、Datavisual、Infogr.am 17、堆叠式面积图 堆叠式面积图 (Stacked Area Graph) 的原理与简单面积图相同,但它能同时显示多个数据系列...堆叠式面积图使用区域面积来表示整数,因此不适用于负值。总的来说,它们适合用来比较同一间隔内多个变量的变化。...不过,圆环图还是比饼形图略有优势,它让人不再只看「饼」的面积,反面更重视总体数值的变化:专注于阅读弧线的长度,而不是比较「饼与饼」之间的比例不同。

    31910

    『数据可视化』一文掌握Pandas可视化图表

    关注可以叫我才哥,学习分享数据之美 我们的第94篇原创 作者:才哥 ---- ☆ 大家好,我是才哥。...坐标轴文字 细心的朋友可能会发现,在上图中x轴标签数字显示是躺着的,怎么坐起来呢? 那么可以通过参数rot设置文字的角度 # x轴标签旋转角度 df.plot.bar(rot=0) ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...面积图 面积图又称区域图,是将折线图与坐标轴之间的区域使用颜色填充,填充颜色可以很好地突出趋势信息,一般颜色带有透明度会更合适于观察不同序列之间的重叠关系。...默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() ? 单个面积图 df.a.plot.area() ?

    8.2K40

    一文掌握Pandas可视化图表

    当然,在使用新的引擎前需要先安装对应的库。...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...面积图又称区域图,是将折线图与坐标轴之间的区域使用颜色填充,填充颜色可以很好地突出趋势信息,一般颜色带有透明度会更合适于观察不同序列之间的重叠关系。...np.random.seed(1) df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"]) df.head() 默认情况下,面积图是堆叠的...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上

    8.2K50

    R可视乎|分面一页多图

    双变量数据可视化可能对于我们比较简单, 但是如果变量是三个或者更多,怎么在一幅图一起显示呢?今天我们就来讨论这个问题,解决方案有两种。 1.数据介绍 使用R包自带的mpg数据集,前几行展示如下。...所以我们还可以通过其他参数来引进更多的属性,但是越多图就显得越复杂。看下面这个图,但是可读性不是很高。 ? 3.使用分面 我们可以将图片按照第三个属性进行分面处理。...ggplot2的分面有两种方式,分别使用 facet_wrap 或 facet_grid 函数。...3.2.facet_grid() 如果想通过两个变量对图进行分面,则使用`facet_grid()`。这个函数第一个参数也是公式,但该公式包含由~隔开的两个变量。...如果使用连续变量进行分面,得到的图会非常的多,每个数值分一次面,可读性很差,不建议使用该方法。 4.2.

    1.5K40
    领券