首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

统计师的Python日记【第十天:数据聚合】

这是一个典型的数据聚合的例子,现在如果想用Pandas来实现,应该如何处理? 1. 聚合运算 (1)groupby:按照变量进行分组 要实现这个目的,使用 groupby 语句即可。...(2)按照函数进行分组 刚刚是对变量进行groupby,还可以直接对函数进行groupby。函数的对象是索引。...如果索引是字符串,还可以有更多玩法,比如数据是这样的: ? 索引是每个人的名字,那么现在可以对名字的占位长度进行GroupBy: ? 好吧,暂时就想到这么多。...(2)交叉表crosstab 因为是统计师,经常会做卡方检验,所以对列联表或者是交叉表很熟悉,就是看交叉分组下的频数。...现在想做一个fam和gender的列联表: pd.crosstab(family.fam, family.gender,margins=True) ?

2.8K80

快速介绍Python数据分析库pandas的基础知识和代码示例

我创建了这个pandas函数的备忘单。这不是一个全面的列表,但包含了我在构建机器学习模型中最常用的函数。让我们开始吧!...在向append()添加python字典类型时,请确保传递ignore_index=True,以便索引值不会被使用。...info()函数用于按列获取标题、值的数量和数据类型等一般信息。一个类似但不太有用的函数是df.dtypes只给出列数据类型。...通常回根据一个或多个列的值对panda DataFrame进行排序,或者根据panda DataFrame的行索引值或行名称进行排序。 例如,我们希望按学生的名字按升序排序。...假设我们想按性别将值分组,并计算物理和化学列的平均值和标准差。

8.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas图鉴(一):Pandas vs Numpy

    Pandas[1]是用Python分析数据的工业标准。只需敲几下键盘,就可以加载、过滤、重组和可视化数千兆字节的异质信息。...Pandas 给 NumPy 数组带来的两个关键特性是: 异质类型 —— 每一列都允许有自己的类型 索引 —— 提高指定列的查询速度 事实证明,这些功能足以使Pandas成为Excel和数据库的强大竞争者...4.快速元素搜索 对于NumPy数组,即使搜索的元素是第一个,仍然需要与数组大小成比例的时间来找到它。使用Pandas,可以对我们预期最常被查询的列进行索引,并将搜索时间减少到On。...它需要热身:第一次查询比NumPy慢一些,但随后的查询就明显快了。 5.按列连接 如果想用另一个表的信息来补充一个基于共同列的表,NumPy几乎没有用。而Pandas更好,特别是对于1:n的关系。...Pandas连接有所有熟悉的 inner, left, right, 和 full outer 连接模式。 6.按列分组 数据分析中另一个常见的操作是按列分组。

    35550

    用户画像准确性评测初探 ——拨开python大数据分析的神秘面纱

    至问卷回收完毕,实际工作才完成一半,接下来就是远超预估的复杂繁琐的数据处理及分析过程了。我想用下面这张图来描述整个分析过程。 ? 整个分析包括四部分: (1)  黄框:活跃用户数据处理。...这里我花费了大量的时间写脚本、调试,这里大量采用pandas,感谢它大大简化了我的代码量。为了便于大家熟悉了解pandas的用法,我这里会截取部分代码来看。...(b)join——how原则同merge,默认how=‘left’ 主用于索引拼接列,两张表不同列索引合并成一个DataFram,比较少用。...(c)concat——axis=0,按行合并,axis=1,按列合并 stu_score2 = pd.concat([df_student,df_score], axis=0)。...(b)groupby 根据某列或某几列分组,本身没有任何计算,返回,用于做分组后的数据统计,如: group_results = total_result.groupby(['lable', 'diff_value

    4.6K40

    最全面的Pandas的教程!没有之一!

    安装 Pandas 如果大家想找一个Python学习环境,可以加入我们的Python学习圈:784758214 ,自己是一名高级python开发工程师,这里有我自己整理了一套最新的python系统学习教程...分组统计 Pandas 的分组统计功能可以按某一列的内容对数据行进行分组,并对其应用统计函数,比如求和,平均数,中位数,标准差等等… 举例来说,用 .groupby() 方法,我们可以对下面这数据表按...'Company' 列进行分组,并用 .mean() 求每组的平均值: 首先,初始化一个DataFrame: ?...因为我们没有指定堆叠的方向,Pandas 默认按行的方向堆叠,把每个表的索引按顺序叠加。 如果你想要按列的方向堆叠,那你需要传入 axis=1 参数: ? 注意,这里出现了一大堆空值。...,index 表示按该列进行分组索引,而 columns 则表示最后结果将按该列的数据进行分列。

    26K64

    其实你就学不会 Python

    Python 用来处理结构化数据需要有一个叫 Pandas 的开源包,这东西不是 Python 的固有组件,你得自己再下载安装,过程就不太简单了,要配一堆让初学者晕死的东西。...,这是常规思路,但结果有点尴尬: 部门人数,也就是每个分组的成员数量,只要有一列就行了,为什么出来这么多列,它像是对每一列都做了同样的动作,好奇怪。...明明分组汇总结果也是个有行有列的结构化数据表,继续用 DataFrame 不好吗?为什么要再搞一种东西?让人费解。 Python 并没有止步于这两个。...这是集合的集合吗? 上网搜一下,原来这叫做可迭代对象,它的每个成员都是以 DataFrame+ 分组索引构成的,也有方法再拆开看。...估计到这里不少人已经晕了,完全搞不清我都在胡说八道些什么。嗯,这就对了,这才是职场人员的正常状态。

    11010

    14个pandas神操作,手把手教你写代码

    01 Pandas是什么 很多初学者可能有这样一个疑问:“我想学的是Python数据分析,为什么经常会被引导到Pandas上去?”虽然这两个东西都是以P开头的,但它们并不是同一个层面的东西。...到时我的办公室会关门,而我只有一台家用电脑,没有什么其他东西。我决定为我当时正在构思的新的脚本语言写一个解释器,它是ABC语言的后代,对UNIX/C程序员会有吸引力。...、处理缺失值、填充默认值、补全格式、处理极端值等; 建立高效的索引; 支持大体量数据; 按一定业务逻辑插入计算后的列、删除列; 灵活方便的数据查询、筛选; 分组聚合数据,可独立指定分组后的各字段计算方式...('team').sum() # 按团队分组对应列相加 df.groupby('team').mean() # 按团队分组对应列求平均 # 不同列不同的计算方法 df.groupby('team'...图5 按team分组后求平均数 不同计算方法聚合执行后的效果如图6所示。 ?

    3.4K20

    Excel数据处理你是选择Vba还是Python?当然是选pandas!

    ,后来我用 Python 再解决一次,通过本文作简单分享。...但是,这样的需求如果在 Python 中,我们的处理效率可以提高多少呢?我使用 Python 的 pandas 包处理,在5分钟内搞定,并且代码有非常好的阅读性与扩展性。...(g_agg_funcs) ,按销售员与货品分组并统计结果,pandas 中就是这么简单 但是,我们需要每个销售员单独一个 sheet 输出结果。...这里先创建一个 ExcelWriter对象 - res.index.get_level_values(0) ,从分组结果中获得销售人员列,但这里的输出是带重复值的,因此我们需要使用 set 去重复 -...总结 pandas 使用总结如下: - 理解好 pandas 中的索引(特别是多层索引)可以大大提升你的数据处理能力 - pandas 中如果需要多次输出同一个 excel 文件,可以使用 ExcelWriter

    3.5K30

    从Excel到Python:最常用的36个Pandas函数

    Dtypes是一个查看数据格式的函数,可以一次性查看数据表中所 有数据的格式,也可以指定一列来单独查看 #查看数据表各列格式 df.dtypes id int64 date datetime64[ns]...Sort_index函数用来将数据表按索引列的值进行排序。 #按索引列排序 df_inner.sort_index() ?...4.数据分组 Excel中可以通过VLOOKUP函数进行近似匹配来完成对数值的分组,或者使用“数据透视表”来完成分组 Python中使用Where函数用来对数据进行判断和分组 #如果price列的值>3000...还可以对多个字段的值进行判断后对数据进行分组,下面的代码中对city列等于beijing并且price列大于等于4000的数据标记为1。...Python中通过pivot_table函数实现同样的效果 #设定city为行字段,size为列字段,price为值字段。 分别计算price的数量和金额并且按行与列进行汇总。

    11.5K31

    python df 列替换_如何用Python做数据分析,没有比这篇文章更详细的了(图文详情)...

    Python 中使用 dtypes 函数来返回数据格式。  Dtypes 是一个查看数据格式的函数,可以一次性查看数据表中所有数据的格式,也可以指定一列来单独查看。  ...这几种方式的差别在我其他的文章中有详细的说明和对比。  ...Python 中需要使用 ort_values 函数和 sort_index 函数完成排序。  排序  在 python 中,既可以按索引对数据表进行排序,也可以看制定列的数值进行排序。...1#按索引列排序  2df_inner.sort_index()  sort_index  数据分组  Excel 中可以通过 VLOOKUP 函数进行近似匹配来完成对数值的分组,或者使用“数据透视表”...下面代码中行的位置按索引日期设置,列按位置设置。

    4.5K00

    python数据分析——数据分类汇总与统计

    前言 推荐一个网站给想要了解或者学习人工智能知识的读者,这个网站里内容讲解通俗易懂且风趣幽默,对我帮助很大。我想与大家分享这个宝藏网站,请点击下方链接查看。...按列分组 按列分组分为以下三种模式: df.groupby(col),返回一个按列进行分组的groupby对象; df.groupby([col1,col2]),返回一个按多列进行分组的groupby...对象; df.groupby(col1)[col2]或者 df[col2].groupby(col1),两者含义相同,返回按列col1进行分组后col2的值; 首先生成一个表格型数据集: import...print(list(gg)) 示例二 【例2】采用函数df.groupby([col1,col2]),返回一个按多列进行分组的groupby对象。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引

    14510

    Python入门之数据处理——12种有用的Pandas技巧

    ◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...例如,我们想获得一份完整的没有毕业并获得贷款的女性名单。这里可以使用布尔索引实现。你可以使用以下代码: ? ? # 2–Apply函数 Apply是一个常用函数,用于处理数据和创建新变量。...# 4–透视表 Pandas可以用来创建MS Excel风格的透视表。例如,在本例中一个关键列是“贷款数额”有缺失值。我们可以根据“性别”,“婚姻状况”和“自由职业”分组后的平均金额来替换。...多索引需要在loc中声明的定义分组的索引元组。这个元组会在函数中用到。 2. .values[0]后缀是必需的,因为默认情况下元素返回的索引与原数据框的索引不匹配。在这种情况下,直接赋值会出错。...编者按: 本文的作者提供了许多相关的阅读资料链接,请需要的读者朋友点击文末阅读原文http://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation

    5K50

    Python求取Excel指定区域内的数据最大值

    本文介绍基于Python语言,基于Excel表格文件内某一列的数据,计算这一列数据在每一个指定数量的行的范围内(例如每一个4行的范围内)的区间最大值的方法。   ...在函数中,我们首先读取文件,将数据保存到df中;接下来,我们从中获取指定列column_name的数据,并创建一个空列表max_values,用于保存每个分组的最大值。...随后,使用range函数生成从0开始,步长为4的索引序列,以便按每4行进行分组;这里大家按照实际的需求加以修改即可。...变量中,该结果是一个包含了每个分组最大值的列表。   ...最后,通过rdf.to_csv():将这个rdf保存为一个新的.csv格式文件,并设置index=False以不保存索引列。   执行上述代码,我们即可获得结果文件。

    21120

    Python替代Excel Vba系列(二):pandas分组统计与操作Excel

    案例 数据与上一节一样,就一个学生的数据表。...排名 首先需要解决的是怎么得到班级 top 3? 首要任务是得到排名,如下: 这里需要在数据中新增一列[排名] df.groupby('班级') 就是按 班级 分组的意思。...结果是每组都有一个分数。而 transform 方法的特点就是不会压缩原数据的行数,因此每组的数都是一样的平均分。 df['班级均分']=class_avg ,同样新增一列。...看看数据 对于这里的 transform 方法可能有些小伙伴会不太理解。后续我会另外发文,针对分组后的 apply、agg、transform 做详细的讲解,关注我噢。...给表格加点颜色 首先定义一个设置颜色的方法 indices=(n for n in arg_df.index) , 获得结果的索引值。

    1.7K30

    数据科学 IPython 笔记本 7.12 透视表

    透视表将简单的逐列数据作为输入,并将条目分组为二维表格,该表提供数据的多维汇总。 数据透视表和GroupBy之间的区别有时会引起混淆;它帮助我将透视表视为GroupBy聚合的多维版本。...使用GroupBy的词汇表,我们可以继续执行这样的过程:我们分组舱位和性别,选择生存列,应用平均聚合,组合生成的分组,然后对分层索引取消堆叠,来揭示隐藏的多维度。...(你可以在我与 ?...> @mu - 5 * @sig) & (births < @mu + 5 * @sig)') 接下来我们将day列设置为整数;以前它是一个字符串,因为数据集中的某些列包含值'null': # 将 '...看一下这个简短的例子,你可以看到,我们在这一点上看到的许多 Python 和 Pandas 工具,可以结合起来用于从各种数据集中获得洞察力。我们将在以后的章节中,看到这些数据操作的一些更复杂的应用!

    1.1K20

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...因此,本文的目标是从我们的信用卡交易数据中,通过分析获得对数据的理解,从而了解一些关于我们自己消费的习惯,也许能制定一个行动计划来帮助改善我们的个人财务状况。...在下面的示例中,我们首先按星期几对数据进行分组,然后指定要查看的列——“Debit(借方)”,最后对分组数据的“Debit”列执行操作:计数或求和。...,也允许使用正则元组,因此我们可以进一步简化上述内容: 图7 按多列分组 记住,我们的目标是希望从我们的支出数据中获得一些见解,并尝试改善个人财务状况。...例如,属性groups为我们提供了一个字典,其中包含属于给定组的行的组名(字典键)和索引位置。 图12 要获得特定的组,简单地使用get_group()。

    4.7K50

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    基本方法 DataFrame基本方法 好物推荐 关于pandas 昨天写一个小项目的时候,想用pandas把数据写入到Excel中去,结果发现我原先写的那套pandas教程是真的垃圾啊。...可以把不同队列的数据进行基本运算。 4.处理缺失数据。 5.分组运算。比如我们在前面泰坦尼克号中的groupby。 6.分级索引。 7.数据的合并和加入。 8.数据透视表。...s = pd.Series(data) a 0.0 b 1.0 c 2.0 dtype: float64 一个 字典 可以作为输入传递,如果没有指定索引,那么字典键将按照排序的顺序进行构建索引。...index:对于行标签,如果没有索引被传递,则要用于结果帧的索引是可选缺省值np.arrange(n)。 columns:对于列标签,可选的默认语法是 - np.arrange(n)。...这只有在没有通过索引的情况下才是正确的。 dtype:每列的数据类型。 copy:如果默认值为False,则使用该命令(或其它)复制数据。

    6.7K30

    python数据分析——数据分类汇总与统计

    1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...groupby对象; 第三种: df.groupby(col1)[col2]或者 df[col2].groupby(col1),两者含义相同,返回按列col1进行分组后col2的值; 首先生成一个表格型数据集...np.random.randn(5),'data2':np.random.randn(5)}) df gg = df.groupby(df['key1']) gg 【例1】采用函数df.groupby(col),返回一个按列进行分组的...print(list(gg)) 【例2】采用函数df.groupby([col1,col2]),返回一个按多列进行分组的groupby对象。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引

    83910

    懂Excel轻松入门Python数据分析包pandas(二十):数值条件统计

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 上一节我们重点介绍了针对文本条件的统计方式,这次来把数值相关的讲解一下,并且用一个 Excel 操作思维带你理解...不知道我说啥?...当你按下回车,公式自动填充: 其他各种需求 当你理解了上面的思路,那么只要你熟悉 pandas 各种构造 bool 列的技巧,各种需求基本难不倒你。..."30岁以上 男女的人数": 一个个写,太麻烦了,直接条件筛选,分组统计: "男女高于各自性别的平均年龄的人数" - 有没有发现男性的人数与之前需求的人数很接近?...- pandas 中构造 bool 列的过程,与 Excel 操作智能表格非常相似 - idxmin、idxmax 可以根据一列值的最小或最大值,获得对应的行索引值

    78220
    领券