首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

初学者使用Pandas的特征工程

估算这些缺失的值超出了我们的讨论范围,我们将只关注使用pandas函数来设计一些新特性。 用于标签编码的replace() pandas中的replace函数动态地将当前值替换为给定值。...注意:在代码中,我使用了参数drop_first,它删除了第一个二进制列(在我们的示例中为Grocery Store),以避免完全多重共线性。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...我们可以将任何函数传递给apply函数的参数,但是我主要使用lambda函数, 这有助于我在单个语句中编写循环和条件。 使用apply和lambda函数,我们可以从列中存在的唯一文本中提取重复凭证。...没有传统的方式或类型可以创建新特征,但是pandas具有多种函数,可以使你的工作更加舒适。 我强烈建议你选择任何数据集,并自行尝试所有列出的技术,并在下面评论多少以及哪种方法对你的帮助最大。

4.9K31

Pandas速查卡-Python数据科学

) 所有列的唯一值和计数 选择 df[col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...df.iloc[0,:] 第一行 df.iloc[0,0] 第一列的第一个元素 数据清洗 df.columns = ['a','b','c'] 重命名列 pd.isnull() 检查空值,返回逻辑数组...,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换) df.pivot_table(index=col1,values=[col2,col3],aggfunc=max) 创建一个数据透视表...data.apply(np.max,axis=1) 在每行上应用一个函数 加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1,...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max

9.2K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python学习笔记(第七章)

    浅谈返回值 学过c语言的同学,最常见的返回值是这样的 return 0; 我们长谈返回值的类型是整型,我们的意思是指它会返回一个整型的值,前面提到Python会动态分配类型,这里也一样Python能动态的确定函数的类型...专业总结;在函数里定义的参数以及变量,都称为局部变量,出了这个函数,这些变量都是无效的,当执行完该函数后,函数所有的数据都是被自动删除的。...print("谁他妈的艾特我来着") ... number1() ... >>> number() number正在存放数据 谁他妈的艾特我来着 ?...None,如果是一个函数的话,则将第二个可迭代数据里的每一个元素作为函数的参数进行计算,把返回为True,的值筛选出来;如果第一个参数为None,则直接将第二个参数中为True的值筛选出来。...x: x % 2,range(10))) [1, 3, 5, 7, 9] map() 映射 将序列中的每一个元素作为函数的参数进行加工,返回加工后的新序列。

    44110

    Python数据结构与算法笔记(4)

    根据散列函数,两个或者更多项将需要在同一槽中,这种现象被称为碰撞(也被称为冲突)。 目标是创建一个散列函数,最大限度地减少冲突数,易于计算,并均匀分布在哈希表中的项。...这将打破散列的目的。 当两个散列项列到同一个槽时,必须有一个系统的方法将第二个项放在散列表中,这个过程称为冲突解决。 解决冲突的一种方法是查找散列表,尝试查找到另一个空槽以保存导致冲突的项。...操作如下: Map()创建一个新的map,返回一个空的map集合 put(key,val)向map中添加一个新的键值对。...如果键已经在map中,那么用新值替换旧值 get(key)给定一个键,返回存储在map中的值或None del使用del map[key]形式的语句从map中删除键值对 len()返回存储在map中的键值对的数量...in返回True对于key in map语句,如果给定的键在map中,否则为False 字典的一个很大的好处是,给定一个键,我们可以非常快速地查找相关的值。

    1.6K10

    Python全网最全基础课程笔记(七)——列表,跟着思维导图和图文来学习,爆肝2w字,无数代码案例!

    的元素 # 类似地,使用any()函数结合生成器表达式来检查列表中是否有元素满足条件x > 5 # 如果有任何一个元素满足条件,any()返回True,否则返回False if any(x...) # 运行结果: # [2, 4, 6] 列表的常用函数 类型 函数名 描述 新增 append() 在列表末尾添加一个新的元素 extend() 在列表末尾一次性追加另一个序列中的多个值...(用新列表扩展原来的列表) insert() 在指定位置插入一个元素 删除 remove() 移除列表中某个值的第一个匹配项 pop() 移除列表中的一个元素(默认最后一个元素),并返回该元素的值...() extend() 方法用于在列表的末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。...)是一种可变的数据结构,意味着你可以直接修改列表中的元素而不需要创建新的列表。

    26310

    如何使用Python的lambda、map和filter函数

    lambda函数介绍 lambda函数: 不需要名字 可以接受任意数量的参数 仅返回1个表达式 让我们看一个普通def函数与lambda函数的示例。我们创建一个函数来计算一个值的平方。...图1 lambda是匿名函数。在上面的示例中,我为它指定了一个名称lambda_sq,但是lambda函数语法实际上不需要名称。...下面是使用lambda函数的相同示例。 图3 filter()函数介绍 filter()函数类似于map(),然而,map()在一个迭代器上执行一个特定的函数,并返回该迭代器中的每个元素。...而filter()只返回一个函数返回True的元素。让我们看一个例子,有一个包含数字1-20的列表,只想返回奇数。首先,我们创建一个包含1-20的值的列表。...了解了lambda、map和filter,下一步做什么? pandas数据框架中的任何列(即pandas系列)都是迭代器,因此可以在pandas数据框架上使用上述相同的技术!

    2.1K30

    从小白到大师,这里有一份Pandas入门指南

    在阅读本文时,我建议你阅读每个你不了解的函数的文档字符串(docstrings)。简单的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。...内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。...这一方法返回了一个 DataFrameGroupBy 对象,在这个对象中,通过选择组的唯一年代标签聚合了每一组。 在这种情况下,聚合方法是「unique」方法,但它也可以接受任何(匿名)函数。

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    在阅读本文时,我建议你阅读每个你不了解的函数的文档字符串(docstrings)。简单的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。...内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。...这一方法返回了一个 DataFrameGroupBy 对象,在这个对象中,通过选择组的唯一年代标签聚合了每一组。 在这种情况下,聚合方法是「unique」方法,但它也可以接受任何(匿名)函数。

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    在阅读本文时,我建议你阅读每个你不了解的函数的文档字符串(docstrings)。简单的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。...内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。...这一方法返回了一个 DataFrameGroupBy 对象,在这个对象中,通过选择组的唯一年代标签聚合了每一组。 在这种情况下,聚合方法是「unique」方法,但它也可以接受任何(匿名)函数。

    1.8K11

    Python常用小技巧总结

    c'] # 重命名列名(需要将所有列名列出,否则会报错) pd.isnull() # 检查DataFrame对象中的空值,并返回⼀个Boolean数组 pd.notnull() # 检查DataFrame...对象中的⾮空值,并返回⼀个Boolean数组 df.dropna() # 删除所有包含空值的⾏ df.dropna(axis=1) # 删除所有包含空值的列 df.dropna(axis=1,thresh...⼀个按列col1进⾏分组,计算col2的最⼤值和col3的最⼤值、最⼩值的数据透视表 df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持 df.groupby....append(df2) # 将df2中的⾏添加到df1的尾部 df.concat([df1,df2],axis=1,join='inner') # 将df2中的列添加到df1的尾部,值为空的对应⾏与对应列都不要...sys.getsizeof() range()函数返回的是一个类,在使用内存方面,range远比实际的数字列表更加高效 import sys mylist = range(1,10000) print

    9.4K20

    Java 8 Optional 最佳指南

    作为一名 Java 程序员,我真的是烦透了 NullPointerException(NPE),尽管和它熟得就像一位老朋友,知道它也是迫不得已——程序正在使用一个对象却发现这个对象的值为 null,于是...小王第一天上班,领导老马就给他安排了一个任务,要他从数据库中根据会员 ID 拉取一个会员的姓名,然后将姓名打印到控制台。...05、非空表达式 Optional 类有一个非常现代化的方法——ifPresent(),允许我们使用函数式编程的方式执行一些代码,因此,我把它称为非空表达式。...如果 Optional 对象中的值为 null,则执行参数中的函数。...Predicate(Java 8 新增的一个函数式接口),也就是说可以将一个 Lambda 表达式传递给该方法作为条件,如果表达式的结果为 false,则返回一个 EMPTY 的 Optional 对象

    66310

    盘点Pandas中csv文件读取的方法所带参数usecols知识

    一、前言 前几天在Python最强王者群有个叫【老松鼠】的粉丝问了一个关于Pandas中csv文件读取的方法所带参数usecols知识问题,这里拿出来给大家分享下,一起学习。...usecols是先从读取到的数据判断出当前的列名并作为返回值,类似于列表,使用函数调用时,例如lambda x:各个元素都会被使用到,类似于map(lambda x: x, iterable), iterable...就是usecols的返回值,lambda x与此处一致,再将结果传入至read_csv中,返回指定列的数据框。...对应这个例子中就是lambda c: c in iterable,其实不管iterable是列表还是集合,两者中包含的元素是一样的,那取出来的列都是一样的;而这里面的 c 就是usecols的返回值,可以尝试打印出这个...这篇文章基于粉丝提问,针对Pandas中csv文件读取的方法所带参数usecols知识,给出了具体说明和演示,顺利地帮助粉丝解决了问题!当然了,在实际工作中,大部分情况还是直接全部导入的。

    2.7K20

    带你和Python与R一起玩转数据科学: 探索性数据分析(附代码)

    R 在R语言中基本的描述性统计方法,如我们说过的,是summary()。 ? 这个方法返回一个表格对象,使我们拥有了一个包含各列统计信息的数据框。...记住一个数据框就是一个向量的列表(也就是说各个列都是一个值的向量),如此我们便可以很容易地用这些函数作用于列上。最终我们将这些函数和lapply或sapply一起使用并作用于数据框的多列数据上。...不管怎样,在R语言中有一家族的函数可以作用于列数据或行数据上以直接得到均值或和值。这样做比用apply函数更有效,并且还允许我们将他们不光用在列数据上,更可用在行数据上。例如,你输入‘?...R 我们已经了解到在R中我们可以用max函数作用于数据框的列上以得到列的最大值。额外的,我们还可以用which.max来得到最大值的位置(等同于在Pandas中使用argmax)。...如果我们使用行列换位的数据框,我们可以用函数lapply或sapply对每一个年列进行操作,然后得到一列表或一向量的指标值(我们将会用sapply函数返回一个向量)。

    2K31

    fast.ai 机器学习笔记(一)

    =True, inplace=True ) inplace将要求 Pandas 更改现有数据框而不是返回一个新的。...fix_missing 对于数值数据类型,首先我们检查是否有空列。如果有,它将创建一个新列,名称末尾附加_na,如果缺失则设置为 1;否则设置为 0(布尔值)。然后将缺失值替换为中位数。...问题:您能否尝试通过创建新列来捕捉季节性和趋势效应,比如 8 月份的平均销售额?这是一个很好的主意。...所以我说让我们尝试只选择大于 0.005 的列,创建一个名为df_keep的新数据框,其中只包含那些保留的列,创建一个只包含这些列的新训练和验证集,创建一个新的随机森林,并查看验证集得分。...所以我现在要从我的数据框中删除这些列,然后我可以尝试再次运行完整的模型。

    39010

    Python 进阶指南(编程轻松进阶):十、编写高效函数

    函数名称 函数名应该遵循我们在第 4 章中描述的标识符的惯例。但是它们通常应该包含一个动词,因为函数通常执行一些动作。你也可以用一个名词来描述正在发生的事情。...我还必须为每个新函数想出新的名字和文档字符串(每个def语句下的三重引号字符串,在第 11 章中进一步解释)。...如您所见,由lambda语句创建的函数与由def语句创建的函数是一样的。 ---- 注 在真实世界的代码中,使用def语句,而不是将 Lambda 函数赋给常量变量。...但在现实世界中,很容易忘记这一点。为了防止这些错误,我们应该总是尝试让函数返回单一数据类型的值。这不是一个严格的要求,有时无法让函数返回不同数据类型的值。...在 2009 年的一次会议上,计算机科学家东尼·霍尔为 1965 年发明的空引用(与 Python 的None值类似的值)道歉,他说“我称之为我的十亿美元错误。

    1.4K70

    SqlAlchemy 2.0 中文文档(三十)

    基本用法 最简单的用法是将现有数据库反映到一个新模型中。我们创建一个新的AutomapBase类,方式类似于我们创建声明性基类,使用automap_base()。...由于我们正在检查的 ForeignKeyConstraint 对应于来自直接映射类的引用,因此关系将被设置为指向引用类的多对一关系;在引用类上将创建相应的一个对多反向引用,引用此类。...如果在一侧检测到一个,但在另一侧没有,则AutomapBase尝试在缺失的一侧创建一个关系,然后使用relationship.back_populates参数将新关系指向另一侧。...backref()函数的结果将用于在第二步产生一个新的relationship(),因此如果正在使用自定义关系函数,则用户定义的实现正确区分这两个函数非常关键。...基本用法 最简单的用法是将现有数据库反映到新模型中。我们以与创建声明性基类相似的方式创建一个新的 AutomapBase 类,使用 automap_base()。

    32210

    数据科学 IPython 笔记本 8.9 自定义图例

    用于点的大小的图例 有时,图例默认值不足以满足给定的可视化效果。例如,你可能正在使用点的大小来标记数据的某些特征,并且想要创建反映这一点的图例。这是一个例子,我们将使用点的大小来表示加州城市的人口。...为此,一个很好的工具选择是 Matplotlib 的 Basemap 附加工具包,我们将在“地理数据和 Basemap”中探讨。 多个图例 有时在设计绘图时,你需要在同一轴域上添加多个图例。...我们可以通过从头开始创建一个新的图例艺术家来解决这个问题,然后使用较低级别的ax.add_artist()方法,手动将第二个艺术家添加到绘图中: fig, ax = plt.subplots() lines...如果你检查一下ax.legend()的源代码(回想一下你可以在 IPython 笔记本中使用ax.legend??...来实现),你会看到该函数只包含一些逻辑,创建合适的Legend艺术家,然后将其保存在legend_属性中,并在绘图时添加到图形中。

    1.9K20

    一篇文章教你如何用R进行数据挖掘

    但是,需要确保两向量相同数量的元素。如果没有的话,它将返回NA值。 ? 4)数据框 这是最常用的一种数据类型,它是用来存储列表数据的。它不同于矩阵,在一个矩阵中,每一个元素必须有相同的类。...但是,在一个数据框里你可以把向量包含不同类别的列表。这意味着,每一列的数据就像一个列表,每次你在R中读取数据将被存储在一个数据框中。例如: ? 让我们解释一下上面的代码。df是数据框的名字。...dim()返回数据框的规格是4行2列,str()返回的是一个数据框的结构,nrow()和ncol()返回是数据框的行数和列数。...例如,因为有两个缺失值,它不能直接做均值得分。例如: ? na.rm = TRUE告诉R计算时忽略缺失值,只是计算选定的列中剩余值的均值(得分)。删除在数据中的行和NA,您可以使用na.omit ?...让我们检查这些缺失值的变量在哪里,其实很多数据科学家一再建议初学者在在数据探索阶段应密切关注缺失值。 ? 因此,我们看到列Item_Weight 有1463个缺失的数据。

    4.1K50
    领券