首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

你还在纠结单个GPU怎么训练GPT-3吗?快来看看HP调优新范式吧!

大数据文摘转载自微软研究院AI头条 编者按:伟大的科学成就不能仅靠反复试验取得。在构建大规模人工智能系统时,基础研究所形成的理论见解能够帮助研究员大大减少试错次数并提高成本效益。在今天的文章中,微软研究院的研究员们将介绍基础研究如何首次能够调整庞大的神经网络。由于庞大的神经网络训练十分昂贵,所以研究员们通过展示特定参数化在不同模型大小上保留最佳超参数来解决这一问题。通过与 OpenAI 合作,微软研究院的研究员们在一系列现实场景中也验证了该技术的实际优势。 伟大的科学成就不能仅靠反复试验取得。例如太空计划中

01

深度学习在断裂力学中的应用

问题描述 深度学习在图像处理等领域具有广泛的应用,其本质是利用大量的数据,总结出可用的规律,找到输入量与输出量之间的内在联系。调研文献可知,获取大量的数据是深度学习的前期基础,因此,要想利用深度学习解决力学实际问题,首要的任务就是搭建力学和机器学习之间的桥梁(通俗的来讲,对现有的实验数据进行处理,转换为深度学习程序能够识别的格式);附:高华健作报告时曾经说过:力学工作者也要顺应时代潮流~,把机器学习当作一种解决实际问题的工具,因此,本推文分享一篇相关文献(深度学习与分子动力学相结合的具体实例),希望对大家有

04

PRM 与 HRM 双剑合璧 | 增量式 Vision Transformer 的参数有效跨任务提示 !

深度模型已经在解决各种单独的机器学习任务上取得了卓越的性能。然而,在实际应用中,训练数据通常是顺序接收的,而不是一次性全部可用。因此,为深度模型装备在动态环境中学习的能力是深度学习(DL)的一个长期目标。增量学习(IL)涉及跨不同任务动态学习深度模型,并且经常遭受对先前学习任务性能下降的问题,这被称为灾难性遗忘(CF)。最近,基于排练的方法可以通过在固定内存缓冲区中保留一些旧任务的代表性样本(即示例)有效地减轻IL中的遗忘。然而,在严格保护隐私和内存严重受限的情况下,这些方法无法奏效,因为旧任务的样本不可用,且内存缓冲区有限。在本文中,作者专注于无需示例和内存严重受限的增量学习(RFMCIL)的策略,该策略无需示例并且在内存严重受限的情况下训练深度模型。

01
领券