首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

select count(*)、count(1)、count(主键列)和count(包含空值的列)有何区别?

下班路上看见网上有人问一个问题: oracle 10g以后count(*)和count(非空列)性能方面有什么区别?...首先,准备测试数据,11g库表bisal的id1列是主键(确保id1列为非空),id2列包含空值, ?...前三个均为表数据总量,第四个SQL结果是99999,仅包含非空记录数据量,说明若使用count(允许空值的列),则统计的是非空记录的总数,空值记录不会统计,这可能和业务上的用意不同。...,如果数据表字段多、数据量大,显然主键索引占用的数据块要比数据表占用的数据块少,因此仅索引扫描,而且是全索引快速扫描(多块读),消耗的资源会更少些了。...总结: 11g下,通过实验结论,说明了count()、count(1)和count(主键索引字段)其实都是执行的count(),而且会选择索引的FFS扫描方式,count(包含空值的列)这种方式一方面会使用全表扫描

3.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【动手实践】Oracle 12.2新特性:多列列表分区和外部表分区

    在Oracle 12.2版本中,增加了大量的分区新特性,这其中包括: 自动的列表分区创建 在线的普通表转换分区表 支持只读分区和读写分区混合 以下介绍的三个特性同样是12.2新增的: 多列列表分区、外部表分区...,最多支持16个列值定义,这极大的丰富了列表分区的适用场景。...继续前面的测试用例,当MOVE时指定保留分区中区域为「BEIJING」的数据后,『TIANJIN』的数据则被移除了: insert into dba_by_db_in_yhem values(6,'SECOOLER...在12.2中,Oracle还支持外部表分区,类似如下的语法展示了这一特性的用途,对于一个统一的外部表,可以通过分区指向不同的外部文件,不同文件可以用于存储已经分类的数据,从而更加灵活的使用外部表: CREATE...,将有助于我们深入和灵活的去使用Oracle数据库。

    1.1K50

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...语法 要创建一个空的数据帧并向其追加行和列,您需要遵循以下语法 - # syntax for creating an empty dataframe df = pd.DataFrame() # syntax...列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...Pandas 库创建一个空数据帧以及如何向其追加行和列。

    28030

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。...图9 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三列的新数据框架。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    19.2K60

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...[1,:] (2)读取第二列的值 # 读取第二列全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某列 # 读取第1行,第B列对应的值 data3...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:

    10K21

    C++ 连接数据库的入口和获取列数、数据

    第一个是连接数据库的:       行内带有详细注释,皆本人的见解,有理解错的,求帮指出。       再作简单介绍,之所有带有int返回类型,是因为一旦连接数据库失败就return 0 结束程序。...形参所输入的分别是 数据库地址、端口,本机的端口一般是3306、数据库名、用户名、密码,调用就能用了。...用来获取数据库中表的列名,并且在依次、有顺序地输出列名后输出所有数据的函数。       里面一样注释齐全,还不明白的请留言!有错的请留言告诉我咯。谢谢!      ...请读者认清里面的函数,下作简介: mysql_query(,) 这条是执行命令的,成功返回0,第一个参数是连库缓存变量,第二个是命令字符串; mysql_store_result(),获取结果集,...形参是连库缓存变量,返回值是mysql res 类型的结果集缓存变量;mysql_fetch_fields(),获取表中的列名字,它返回的是mysql filed类型的数组,用一次就能获取所有列名,用一循环即可输出所有

    2.1K80

    解锁TOAST的秘密:如何优化PostgreSQL的大型列存储以最佳性能和可扩展性

    解锁TOAST的秘密:如何优化PostgreSQL的大型列存储以最佳性能和可扩展性 PostgreSQL是一个很棒的数据库,但如果要存储图像、视频、音频文件或其他大型数据对象时,需要TOAST以获得最佳性能...本文主要介绍使用TOAST技术来提高性能和可扩展性。 PG使用固定大小的页面,这就给存储大值带来了巨大挑战。为解决这个问题,大数据值被压缩并分成多个较小的块。...但是,请务必注意,更改列的存储策略可能会影响查询的性能和表的大小。因此,建议使用不同存储策略测试您的特定用例,以确定哪个提供最佳性能。...4)有限的数据类型 仅当定义表表有仅oid、bytea或其他TOASTable存储类的数据类型列时才会创建TOAST表。varchar等数据类型可能存储的数据也很大,但不能使用TOAST表。...设计表时,请考虑存储在列中数据的大小和类型,并选择能够满足应用程序性能和空间要求的合适存储策略。也可以随时更高列的存储策略,尽管可能会影响查询的性能和表的大小。

    2.3K50

    hbase源码系列(四)数据模型-表定义和列族定义的具体含义

    hbase是一个KeyValue型的数据库,在《hbase实战》描述它的逻辑模型【行键,列族,列限定符,时间版本】,物理模型是基于列族的。但实际情况是啥?还是上点代码吧。     ...); //压缩内存和存储的数据,区别于Snappy colDesc.setDataBlockEncoding(DataBlockEncoding.PREFIX);...//bloom过滤器,过滤加速 colDesc.setBloomFilterType(BloomType.ROW); //压缩内存和存储中的数据,内存紧张的时候设置...了解完表和列族的定义之后,我们看看KeyValue是怎么存储的吧,引用一下代码,可能大家一看就都懂了。   ...rowkey、列族这些信息,在列很多的情况下,rowkey和列族越长,消耗的内存和列族都会很大,所以它们都要尽量的短。

    1.1K60

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...numpy 是 Python 中用于科学计算的基础库,提供了大量的数学函数工具,特别是对于数组的操作。pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    反射+自定义注解---实现Excel数据列属性和JavaBean属性的自动映射

    需求:通过自定义注解和反射技术,将Excel文件中的数据自动映射到pojo类中,最终返回一个List集合?   ...第一个主要是标注和Excel文件中那张sheet表,第二个主要是将Excel文件中的列名和pojo类的对应属性绑定,具体用法瞅瞅我下面贴的代码就OK。...文件中的数据完成自动映射的,请参考下面pojo类代码。...我调用工具类中的方法进行数据的自动映射,数据10000条,最终导入到数据库中全程使用了7分钟,各位是不是觉得时间还是有点长,但是这个过程我是即把这10000多条的数据封装进来了而且还成功插入到数据库中去了...需要特别说明一点的是:将Excel文件中的数据封装到数据集合中只需3秒多一点,我反正是够用了,哈哈~~   我的数据最后是封装到一个结果处理Vo类中。

    2.5K90

    R语言第二章数据处理⑤数据框列的转化和计算目录正文

    正文 本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...Transmutate():计算新列但删除现有变量。...同时还有mutate()和transmutate()的三个变体来一次修改多个列: Mutate_all()/ transmutate_all():将函数应用于数据框中的每个列。...mutate:通过保留现有变量来添加新变量,通过保留现有列来添加新列(sepal_by_petal): library(tidyverse) my_data <- as_tibble(iris) my_data...tbl:一个tbl数据框 funs:由funs()生成的函数调用列表,或函数名称的字符向量,或简称为函数。predicate:要应用于列或逻辑向量的谓词函数。

    4.2K20

    对dataframe的一列做数据操作,列表推导式和apply那个效率高啊?

    一、前言 前几天在Python钻石群【一级大头虾选手】问了一个Python处理的问题,这里拿出来给大家分享下。...二、实现过程 这里【ChatGPT】给出了一个思路,如下所示: 通常情况下,使用列表推导式的效率比使用apply要高。因为列表推导式是基于Python底层的循环语法实现,比apply更加高效。...在进行简单的运算时,如对某一列数据进行加减乘除等操作,可以通过以下代码使用列表推导式: df['new_col'] = [x*2 for x in df['old_col']] 如果需要进行复杂的函数操作...(my_function) 但需要注意的是,在处理大数据集时,apply函数可能会耗费较长时间。...这篇文章主要盘点了一个Python基础的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    31720

    深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之列存(二)

    一、什么是 Doc Values Doc Values 是 Elasticsearch 中的一个内部数据结构,用于在字段级别存储排序和聚合所需的数据。...因此,当需要收集Doc_1和Doc_2中所有唯一的词项时,我们只需直接访问这两个文档的词项列表,并执行集合的并集操作。这比使用倒排索引要快得多,因为无需遍历整个索引来收集特定文档的词项。...由于它们是按列存储的,因此可以高效地加载到操作系统的文件系统缓存中(OS cache)。...Doc Values 和倒排索引一起工作,使得 Elasticsearch 能够在处理大量数据时提供高效的检索、排序和聚合功能。...综上所述,Doc Values 的持久化机制确保了其可以灵活地处理不同大小的工作集,而压缩机制则有助于减少存储空间的占用并提高数据访问的效率。

    1K10

    深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之行存(一)

    因此,为了检索时能够获取到字段的原始值,我们需要依赖额外的数据结构。Lucene提供了两种解决方案:Stored Field和doc_values。...然而,需要注意的是,es并不建议大量使用Stored Fields。这是因为存储原始字段值会增加磁盘使用量,并可能降低性能。相反,es更倾向于使用Doc Values和倒排索引来高效地检索和分析数据。...灵活性:拥有文档的原始数据使得ES能够提供多种功能,如字段提取、动态映射更改等,这些功能都依赖于_source字段的内容。...便于调试:对于开发者而言,能够直接访问文档的原始数据有助于调试和验证索引的正确性。...然而,行存储也有一些潜在的开销和限制: 存储成本:由于每个文档的完整原始数据都被存储在索引中,这可能会增加存储空间的需求,尤其是对于大量文档或大型文档而言。

    91810

    深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之倒排索引(三)

    虽然可以使用各种高效的数据结构(如哈希表、B树等)来加速查找,但这些数据结构通常都需要将数据加载到内存中才能实现最优的查找性能。...词项索引的目的是提供一个更紧凑、更快速的方式来查找词典中的词项。它通常使用Trie树(或前缀树)结构来存储词项的前缀信息。...Trie树是一种树形数据结构,用于高效地存储和查找字符串(或其他类型的数据)。在Trie树中,从根到任何一个节点,按照路径上的标签字符顺序连接起来,就是一个相应的字符串。...倒排索引结构通过倒排表、词项字典和词项索引这三个部分,实现了从单词到包含这些单词的文档的快速映射。这种结构使得搜索引擎能够高效地处理大量的文本数据和复杂的查询请求。...根据合并后的倒排列表,Elasticsearch可以快速地确定哪些文档与查询匹配,以及这些匹配文档的相关性。 三、优化与扩展 当然,上述的描述只是倒排索引的基础原理。

    1.4K10
    领券