在很早之前就采集过关于淘宝双11的数据,之前也只是做了比较简单的数据分析,那么就在假日的最后,作一番比较深入的分析吧。我们的目标是:分析双十一销量的影响要素,以及要素在影响销量的比重。 一、数据来源说
另一个世界系列,从另一个角度看数据分析的方法、应用。 本文结构: 1、数据的时效性 2、流式计算与批量计算 3、总结与相关产品 (1) 流式计算流程 (2) 流式计算特点 (3) 相关产品 1、数据的时效性 日常工作中,我们一般会先把数据储存在一张表中,然后对这张表的数据进行加工、分析。既然数据要储存在表中,就有时效性这个概念。 如果我们处理的是年级别的数据,比如人口分析、宏观经济分析,那么数据最新日期距今晚个一两周、甚至一两个月都没什么关系。 如果我们处理的是天级别的数据,比如各大网站的用户偏好分析、零售
另一个世界系列,从另一个角度看数据分析的方法、应用。 循环、分支...都可以在Python中用函数实现! | 函数式编程,打开另一个世界的大门 本文结构: 1、数据的时效性 2、流式计算与批量计算 3、总结与相关产品 (1) 流式计算流程 (2) 流式计算特点 (3) 相关产品 ---- 1、数据的时效性 日常工作中,我们一般会先把数据储存在一张表中,然后对这张表的数据进行加工、分析。既然数据要储存在表中,就有时效性这个概念。 如果我们处理的是年级别的数据,比如人口分析、宏观经济分析
腾讯云服务器的实例规格分为多种,即标准型、内存型、计算型、高IO型、大数据型等,新手站长网想要购买一台CVM云服务器,不清楚如何选择标准型或者计算型,特意查询了腾讯云的官方文档,分享出来,方便大家选择:
在“国产数据库硬核技术沙龙-TDSQL-A技术揭秘”系列分享中,5位腾讯云技术大咖分别从整体技术架构、列式存储及相关执行优化、集群数据交互总线、Fragment执行框架/查询分片策略/子查询框架以及向量化执行引擎等多方面对TDSQL-A进行了深入解读。没有观看直播的小伙伴,可要认真做笔记啦!今天带来本系列分享中最后一篇腾讯云数据库高级工程师胡翔老师主题为“TDSQL-A向量化执行引擎技术揭秘”的分享的文字版。 作为领先的分析型数据库,TDSQL-A是腾讯首款分布式分析型数据库,采用全并行无共享架构,具有自
本文介绍了腾讯云批量计算在高性能计算场景下的优势,通过对比传统超算集群和云计算资源的不同,分析了腾讯云批量计算在成本、效率、易用性、场景覆盖、资源调度、安全合规等方面的优势。同时,文章还分享了腾讯云批量计算如何帮助企业优化计算流程,提升业务效率,降低企业成本,并推动高性能计算在更多场景的广泛应用。
腾讯云批量型实例具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。InstanceTypes分享腾讯云批量计算型BC1实例配置性能包括CPU、内存、使用场景及购买注意事项等信息:
网络流量分析机构Sandvine 2018年10月的《全球互联网现象报告》中显示,在全球整体的互联网下行流量中,视频占到了近58%。现在原始视频的分辨率越来越高,但是在互联网带宽有限的情况下,大部分视频提供商都需要将原始视频转码成多种清晰度的视频,便于用户在不同的网络环境中选择不同清晰度的视频进行观看。因此,视频转码成了必不可少的技术环节。
腾讯云批量型服务器具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。腾讯云百科分享腾讯云批量计算型BS1云服务器配置CPU内存性能注意事项:
TiDB 作为一款高效稳定的开源分布式数据库,在国内外的银行、证券、保险、在线支付和金融科技行业得到了普遍应用,并在约 20 多种不同的金融业务场景中支撑着用户的关键计算。在TiDB 在金融行业关键业务场景的实践(上篇)中,我们介绍了 TiDB 在银行核心交易场景的应用,本篇文章将主要分享 TiDB 在核心外围的关键业务场景的实践。
提起大数据处理引擎,很多人会想到Hadoop或Spark,而在2019年,如果你身处大数据行业却没听说过Flink,那你很可能OUT了!Flink是大数据界冉冉升起的新星,是继Hadoop和Spark之后的新一代大数据处理引擎。2019年初,阿里巴巴以1.033亿美元的价格收购了总部位于德国柏林的初创公司Data Artisans,Data Artisans的核心产品是正是Flink。
在热捧容器、Kubernetes之际,是否有人关注到这么一个事实:其实Kubernetes的学习门槛很高、真能把容器用好的人并不多。
大数据是指海量数据或巨量数据,其规模巨大到无法通过目前主流的计算机系统在合理时间内获取、存储、管理、处理并提炼以帮助使用者决策。
随着业务业务场景不断丰富,批量计算也由传统的HPC逐渐扩展到大数据、AI等多种场景,但各个领域独立发展,呈现出生态割裂、技术栈不兼容,资源利用率低等问题,严重影响批量计算的进一步发展
在现代科学和工程中,数值计算工程师会遇到大量复杂的数学计算问题。这些问题突出的共性表现在高维数、计算规模大、多时空尺度、强非线性等方面。批量处理Batch拥有一套完整的并行计算框架,适配常见的并行模型(MPI应用)。利用海量弹性的云资源,有力地支撑高性能科学计算应用软件和算法。
而在 PLANNING RUN 的时候,SAP 又区分为 short term setting(for MRP, MPS ) and long term setting (for Long term planning )
第一年天猫双十一只有5000万销售额,2018年达到了1682亿。如果算上京东、苏宁等电商平台的交易额,这个数字将更加可观。
当下,已有多家电商平台开启“双十一”预售。10月25日天猫发布数据称,10月24日晚天猫“双十一”开启预售一小时内,3000多个品牌预估成交额比去年同期翻倍增长。
Volcano是一个Kubernetes云原生的批量计算平台,也是CNCF的首个批量计算项目。
一年一度双十一又到了,看了一下今年双十一,或许是今年以来,最优惠的时候。(618相比……各有千秋)
在上篇,我们一起学习了分布式计算中的 MapReduce 模式(分布式计算技术MapReduce 详细解读),MapReduce 核心思想是,分治法,即将大任务拆分成多个小任务,然后每个小任务各自计算,最后合并各个小任务结果得到开始的那个大任务的结果。
内容来源:2018 年 5 月 5 日,小米HBase研发工程师吴国泉在“ACMUG & CRUG 2018 成都站”进行《大数据时代系统体系架构和对比:存储与计算》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
数据分类:静态数据和动态数据。静态数据的常见应用是数据仓库。利用数据挖掘和OLAP (on-line analytical processing)分析工具从静态数据中找出对企业有用的数据。
无服务器云函数(SCF)是腾讯云提供的Serverless执行环境,也是国内首款FaaS(Function as a Service,函数即服务) 产品。其核心理念是让用户将重心放在业务的逻辑实现上,而不用关心底层的运维包括服务器、存储、网络、自动扩缩容、负载均衡、代码部署等问题。
机器之心报道 机器之心编辑部 伴随着 11 支获奖队伍的颁奖典礼举行,2021 WAIC 黑客松圆满落下帷幕。 2021 世界人工智能大会(WAIC)黑客松近日于上海举办。WAIC 黑客马拉松作为 WAIC 期间唯一的一场黑客松,由世界人工智能大会组委会办公室作为指导单位,由机器之心、MindSpore 开源社区、Waston Build 创新中心和六七八九集团主办。 本次黑客松分为两大赛道,设计了多道赛题,聚焦 AI 技术与应用热点问题,吸引了来自全球多个国家多个团队的开发者报名参赛。 7 月 9 日
在介绍Lambda和Kappa架构之前,我们先回顾一下数据仓库的发展历程: 传送门-数据仓库发展历程
腾讯云市场,定位是“企业的云上集市”。 这个双十二,腾讯云市场联合数十家精选服务商,带你共享一场云上的购物狂欢。 活动一:精选开发者服务 为了回馈长期以来个人开发者对腾讯云市场的支持,云市场联合优质服务商推出数款开发者服务精选单品。 如虚拟主机云市场专享价,20元/月,199/年。薅羊毛价仅限云市场双十二会场,戳图片直达: 更有域名建站组合购,优质后缀,无法拒绝的低价: 活动二:送最高500元京东卡! 引流营销小程序,分销商城,企业400电话,微信云报餐系统,买就送大额京东卡
工作负载的分类方法和标准多种多样,其中 Google 提出的一种简单的分类标准广受认可,即将工作负载分为服务型和批处理型。
「产品新鲜事」 告诉你腾讯云服务器每月产品动态与优惠活动 下个月的事,咱们下个月再聊 祝大家一月快乐! 推荐阅读 十一月|搭载 Intel SG1 GPU 加速卡的 GPU 渲染型 GI1 实例发布,黑石多个实例类型开放按量计费
如今,国内云服务器市场竞争是异常激烈,送走双十一、黑色星期五,又迎来双十二。前天我们有看到阿里云双十二活动又开始忽悠新用户,推出的活动相比双十一是稍微不是那么给力,但是相关的政策和套路,还是应该能完成他们预料的KPI考核的。在双十一期间的活动中,比较有诚意的还是腾讯云商家的活动,其中有一款三年1449元的配置,5M带宽、8GB内存、2核CPU,当然是只可以选择几个国内的机房。
11月12号零点钟声响起的时候,仿佛是高考考试结束的铃声,这场全国人均消费1000元的全民购物计算考试落下帷幕。在刚刚过去双十一里,你的朋友圈是什么画风?现在让我们进入#双十一朋友圈大赏#!Ready?GO! 第一种画风:学霸计算型。经过缜密计算,宛若大数学家附身的人体计算机式购物,万事俱备,只等零点下单提交答卷。 没有复习就裸考上阵,感觉不买点什么就亏了便跟风抄学霸作业的“学渣”。 还有双十一剁手后只能默默吃土的…… 随着双十一落幕,小区里的快递点也陆陆续续堆满了快递,快递柜也满了。
数据时代,从数据中获取业务需要的信息才能创造价值,这类工作就需要计算框架来完成。传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决。 基于此,一种新的数据计算结构---流计算方式出现了,它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送
由于最近大量的研究,机器学习模型的性能在过去几年里有了显著的提高。虽然这些改进的模型开辟了新的可能性,但是它们只有在可以部署到生产应用中时才开始提供真正的价值。这是机器学习社区目前面临的主要挑战之一。
存储层,主要是负责存储企业各种系统产生的数据,如 Web 业务系统、订单系统、CRM 系统,ERP 系统、监控系统,数据比如系统的订单交易量,网站的活跃用户数,每个用户的交易额。
Flink 的某些转换算子,如 join、coGroup、groupBy 算子,需要先将 DataStream 或 DataSet 数据集转换成对应的 KeyedStream 或 GroupedDataSet,主要目的是将相同的 key 值的数据路由到相同的 pipeline 中,然后进行下一步的计算操作。
随着移动设备、物联网设备的持续增长。流式数据呈现了爆发式增长。同时,越来越多的业务场景对数据处理的实时性有了更高的要求。基于离线批量计算的数据处理平台已经无法满足海量数据的实时处理需求,在这个背景下,各种实时流处理平台应运而生。 运用好大数据可以让为消费者提供产品或服务的企业进行更精准的营销;比如我们大家都熟知的海尔,他们在推出某一款新型智能空调时,将广告投放到与会员大数据平台合作的旅游、健康类杂志上,不仅为杂志用户提供购买优惠的双赢模式,还通过用户订阅的杂志来判断用户的特点,从而进行更精准的营销。
静态数据:为了支持决策分析而构建的数据仓库系统,其中存放的大量历史数据就是静态数据。
Kafka在0.10版本推出了Stream API,提供了对存储在Kafka内的数据进行流式处理和分析的能力。
分享一篇关于实时流式计算的经典文章,这篇文章名为Streaming 101: The world beyond batch
今天在 Github 阅读EdgeDB[1]的代码,发现它在处理大量if...elif...else判断的时候,使用了一个非常巧妙的装饰器。我们来看看这个方法具体是什么样的。
大数据文摘原创文章 作者:Larry,“大数据文摘”主笔,数据行业从业者。 编注:“大数据文摘”的很多读者亲友,一些纯粹的大数据爱好者,甚至有一部分企业管理者经常在后台向我们建议,希望我们能把大数
Lambda架构由Storm 的作者 [Nathan Marz] 提出, 根据维基百科的定义,Lambda 架构的设计是为了在处理大规模数据时,同时发挥流处理和批处理的优势。通过批处理提供全面、准确的数据,通过流处理提供低延迟的数据,从而达到平衡延迟、吞吐量和容错性的目的。为了满足下游的即席查询,批处理和流处理的结果会进行合并。
Lambda架构背后的需求是由于MR架构的延迟问题。MR虽然实现了分布式、可扩展数据处理系统的目的,但是在处理数据时延迟比较严重。实际上如果内存和CPU足够强大,MR也可以实现近实时运算,但实际业务环境并非如此,因此我们需要权衡,选择实时处理和批处理所需要数据量和恰当的资源。
Flink是下一代大数据计算平台,可处理流计算和批量计算。《Flink-1.9流计算开发:十四、union函数》cosmozhu写的本系列文章的第十四篇。通过简单的DEMO来演示union函数执行的效果 。
为了提升广大用户的文档的使用体验,现推出计算产品文档捉虫大赛。邀请大家对指定产品文档进行体验,反馈文档问题就有机会获得腾讯云电子代金券、京东储值卡和神秘好礼!发现和反馈的文档问题价值越高,奖品越丰厚。
2015年BAT、小米和360等互联网巨头纷纷开始与地产公司达成战略合作,想要包办用户住家生活。另一位互联网巨头京东与地产公司的业务合作早已开始,模式与众不同:房产众筹。去年双十一京东与远洋地产首次尝试地产众筹之后,今年618期间两家的合作更进一步,围绕地产众筹深度合作,玩出了许多花样,这种玩法对于众筹、金融和地产行业都有一定的启发意义。 众筹买房:降低购房门槛,更划算 去年双十一京东房产众筹玩法很简单:支持11元或者1111元就可以享受到1.1折购买房产的福利,看上去确实很诱人,不过只有11个人可以获得
为全面建设 Cocos 开发社区生态,让开发者的作品能帮助到更多人,现全新推出 Cocos 官方旗舰店精选优质插件工具、开发框架、游戏模板,助力开发者多维度打造个人品牌价值!
目前主流的数仓架构—— Lambda 架构,能够通过实时和离线两套链路、两套代码同时兼容实时数据与离线数据,做到通过批处理提供全面及准确的数据、通过流处理提供低延迟的数据,达到平衡延迟、吞吐量和容错性的目的。在实际应用中,为满足下游的即席查询,批处理和流处理的结果会进行合并。
领取专属 10元无门槛券
手把手带您无忧上云