首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

时间复杂度O(n)和空间复杂度

算法对于敲代码的应该都听过,不管是复杂的还是简单的,衡量算法效率的两个重要指标就是时间复杂度和空间复杂度。 时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。...,所以时间复杂度是O(n)。...(i + j); // 语句执行n*m次 }} 同样的,这边执行次数是n*m,用数学的方式n和m趋于无穷大的时候,n≈m,于是执行次数就是n^2,所以时间复杂度是O(n^2)。...当然还有n的三次方、四次方等。 算法还有很多很多的时间复杂度,你要是数学学得好,你就可以找出更多的时间复杂度,本人要是高中时候还能多找几个,现在只能理解这几个了。...而时间复杂度也是能比较的,单以这几个而言: O(1)n)n²)n³) 一个算法执行所消耗的时间理论上是不能算出来的,我们可以在程序中测试获得。

77210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    求m的n次方(优化时间复杂度)

    卷哥心想这问的什么问题,过流程的吗? 面试官眉头紧皱: 看面试官的意思是对卷哥解法的时间复杂度不太满意,卷哥想了15分钟没想出来; 卷哥:卒 题解 正常循环求m的n次方,时间复杂度为O(n)。...如果为奇数n则时间复杂度为O(n/2-1),偶数n就是O(n/2) 代码如下: public int process(int m,int n){ int index = n/2,...= 0){ result *= m; } return result; } 那还有没有时间复杂度更低的算法?...上面我们是固定的两个值缩减,效率固定了就是O(n/2),我们再分析一下:求平方的m值是固定的,那我们能不能不固定两个值缩减,反正值固定,每一次平方后n/2这样对数的算法效率就很快了。...} 步骤图: 最后r x base = 19683就等同我们上图余出来一个单个m值需要与结果值进行平方 这种方式的时间复杂度为O(logn),相对时间复杂度更低。

    86140

    常见算法的时间复杂度 Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…

    虽然我不懂算法,但是我知道关于算法的时间复杂度。比如:Ο(1)、Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)、Ο(n3)…Ο(2n)、Ο(n!)等所代表的意思!...我在面试的时候,就发现有人连 O(1) 代表什么意思都搞不清楚! 关于时间复杂度,有一个公式:T (n) = Ο(f (n))。怎么解释这个公式呢?特别麻烦,我目前还没有想到比较简单的介绍方式。...相关算法举例:哈希算法(不考虑冲突的情况),无论在数据量多么大,都是 O(1)。 ? O(n) O(n) 理解起来也很简单,就是算法的时间复杂度随着数据量的增大几倍,耗时也增大几倍。...常见的算法举例:遍历算法。 ? O(n^2) 就代表数据量增大 n 倍时,耗时增大 n 的平方倍,这是比线性更高的时间复杂度。...常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)。 ? 上图是常见的算法时间复杂度举例。

    8.5K21

    c++ 字典顺序生成全排列,蛮力算法时间复杂度 Θ(n*n!)

    中大于  的最小数,也就是指向 4 的红色箭头所属的位置,然后两个数交换位置       ③ 以从左到右递增的形式对  进行排序 ,最终结果为  visual Studio程序直接复制即可运行!...的位置 也就是指向 2 的红色箭头所属的位置           循环继续,一直运行到循环的停止条件       ③.2  期间遍历每个排列中的从右到左相邻两元素,不满足第一个 “ 信号由(无或弱)到强突然转弱...    {         /*遍历到最大排列的时候结束*/         while (list[j] n!...    {         /*遍历到最大排列的时候结束*/         while (list[j] n!...*Θ(n) 比较次数             j = n - 1;         }         /*遍历到最小排列的时候结束*/         while (arr[j] > arr[

    86820

    时间复杂度o(1), o(n), o(logn), o(nlogn)

    1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 2、时间复杂度为O(1)。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话) 3、时间复杂度为O(n)。 就代表数据量增大几倍,耗时也增大几倍。 比如常见的遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...4、时间复杂度为O(logn)。 当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。

    1.4K10

    时间复杂度中的log(n)底数到底是多少?

    其实这里的底数对于研究程序运行效率不重要,写代码时要考虑的是数据规模n对程序运行效率的影响,常数部分则忽略,同样的,如果不同时间复杂度的倍数关系为常数,那也可以近似认为两者为同一量级的时间复杂度...假设有底数为2和3的两个对数函数,如上图。当X取N(数据规模)时,求所对应的时间复杂度得比值,即对数函数对应的y值,用来衡量对数底数对时间复杂度的影响。...用文字表述:算法时间复杂度为log(n)时,不同底数对应的时间复杂度的倍数关系为常数,不会随着底数的不同而不同,因此可以将不同底数的对数函数所代表的时间复杂度,当作是同一类复杂度处理,即抽象成一类问题。...排序算法中有一个叫做“归并排序”或者“合并排序”的算法,它用到的就是分而治之的思想,而它的时间复杂度就是N*logN,此算法采用的是二分法,所以可以认为对应的对数函数底数为2,也有可能是三分法,底数为3...说明:为了便于说明,本文时间复杂度一概省略 O 符号。

    2.9K50

    又一个,时间复杂度为O(n)的排序!

    桶排序(Bucket Sort),是一种时间复杂度为O(n)的排序。 画外音:百度“桶排序”,很多文章是错误的,本文内容与《算法导论》中的桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内的元素链表空间; 总的来说,空间复杂度是O(n)。...1)桶X内的所有元素,是一直有序的; (2)插入排序是稳定的,因此桶内元素顺序也是稳定的; 当arr[N]中的所有元素,都按照上述步骤放入对应的桶后,就完成了全量的排序。...桶排序的伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应的桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度为O(n)的排序; (2)桶排序,是一种稳定的排序; (3)桶排序,适用于数据均匀分布在一个区间内的场景; 希望这一分钟,大家有收获。

    1K30

    究竟为什么,快速排序的时间复杂度是n*lg(n)? | 经典面试题

    ,swap的时间复杂度是O(1)。...规则三:“树的高度”的时间复杂度往往是O(lg(n))。 分析:树的总节点个数是n,则树的高度是lg(n)。 在一棵包含n个元素二分查找树上进行二分查找,其时间复杂度是O(lg(n))。...对一个包含n个元素的堆顶元素弹出后,调整成一个新的堆,其时间复杂度也是O(lg(n))。 第二大类:组合规则 通过简单规则的时间复杂度,来求解组合规则的时间复杂度。 例如:n个数冒泡排序。...案例一:计算 1到n的和,时间复杂度分析。...总结 for循环的时间复杂度往往是O(n) 树的高度的时间复杂度往往是O(lg(n)) 二分查找的时间复杂度是O(lg(n)),快速排序的时间复杂度n*(lg(n)) 递归求解,未来再问时间复杂度,通杀

    1.5K30

    回溯法求解N皇后问题及其时间复杂度分析

    回溯法求解N皇后问题及其时间复杂度分析 一、回溯法简介 1. 什么是回溯法? 2. 回溯法的时间复杂度分析 蒙特卡罗方法 蒙特卡罗方法在回溯法求解时间复杂度中的应用 二、回溯法求解N皇后问题 1....回溯法求解N皇后问题的过程 2. 回溯法求解N皇后问题的时间复杂度 2.1 求解时的效率分析 回溯法进行效率分析的代码 2.2 时间复杂度分析 一、回溯法简介 1. 什么是回溯法?   ...这样,每一个位置判断是否可以摆放,只需要O(1)的时间复杂度,而非前者O(n)的时间复杂度(以下计算时间复杂度时,均采用的是后者的求解方式)。 2....回溯法求解N皇后问题的时间复杂度   根据前面所讲到的蒙特卡罗方法,此时可以将其用于求解N皇后的时间复杂度。对于n元组长度的问题实例,其状态空间树中的节点数目常见的有n!...所以N皇后的时间复杂度为O(n×实际生成的节点数)。

    2.6K20

    Python-排序-有哪些时间复杂度为O(n)的排序算法?

    前几篇文章介绍了几个常用的排序算法:冒泡、选择、插入、归并、快速,他们的时间复杂度从 O(n^2) 到 O(nlogn),其实还有时间复杂度为 O(n) 的排序算法,他们分别是桶排序,计数排序,基数排序...这个问题非常好,原因是这样的,当桶的个数 m 接近与 n 时,log(n/m) 就是一个非常小的常数,在时间复杂度时常数是可以忽略的。...比如极端情况下桶的个数和元素个数相等,即 n = m, 此时时间复杂度就可以认为是 O(n)。...根据每一位来排序,我们利用上述桶排序或者计数排序,它们的时间复杂度可以做到 O(n)。如果要排序的数据有 k 位,那我们就需要 k 次桶排序或者计数排序,总的时间复杂度是 O(k*n)。...O(n),因此使用基数排序对类似这样的数据排序的时间复杂度也为 O(n)。

    1.5K20

    时间复杂度

    整个分支结构的时间复杂度按最大的分支计算,所以整体的时间复杂度为T(n)=n。...如果传入的m是数字1,for循环只需要执行1次,时间复杂度是1(最优时间复杂度),如果传入的m与n相等,for循环需要执行n次,时间复杂度是n(最坏时间复杂度)。...计算这段程序的时间复杂度时,按最坏时间复杂度计算,所以,T(n)=n。...三、时间复杂度的大O记法 时间复杂度常用大O记法来表示。时间复杂度可以表示成一个问题规模n的数学函数T(n),大O记法是用一个与该数学函数渐近的简化数学函数来表示时间复杂度。...记作T(n)=O(f(n)),称O(f(n))为程序的渐近时间复杂度,简称时间复杂度。 大O记法只关注时间复杂度数学函数的最高次项,忽略了其它低次项和常数项,同时忽略了最高次项的系数。

    71320

    时间复杂度

    算法时间复杂度定义 时间复杂度的定义是:如果一个问题的规模是n,解决这一问题所需算法所需要的时间是n的一个函数T(n),则T(n)称为这一算法的时间复杂度。 算法中基本操作的执行次数。...既然是T(n)的函数,随着模块n的增大,算法执行的时间的增长率和T(n)的增长率成正比,所以T(n)越小,算法的时间复杂度越低,算法的效率越高。 通过时间的复杂度来看算法执行的好坏。...常见的算法时间复杂度 时间复杂度与空间复杂度区别 时间复杂度:全称渐进式时间复杂度,表示算法的执行时间与数据规模的增长关系; 空间复杂度:全称渐进式空间复杂度,表示算法的存储空间与数据规模增长关系;...根据基本操作执行情况计算出规模n的函数f(n),并确定时间复杂度为T(n)=O( f(n)中增长最快的项/此项的系数 )。...但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)即最坏时间复杂度。所以,不同的情况下,这段代码的时间复杂度是不一样的。

    70110

    算法的时间复杂度

    算法的效率: 是指算法执行的时间,算法执行时间需要通过算法编制的程序在计算机上运行时所消耗的时间来衡量。 一个算法的优劣可以用空间复杂度和时间复杂度来衡量。 时间复杂度:评估执行程序所需的时间。...记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。...比如: 在 T(n)=4nn-2n+2 中,就有f(n)=nn,使得T(n)/f(n)的极限值为4,那么O(f(n)),也就是时间复杂度为O(n*n) 大O表示法: 算法的时间复杂度通常用大O符号表述...…… =(n+1)n/2 =n(n+1)/2 =n²/2+n/2 根据上面说的推导大O阶的规则,得到上面这段代码的时间复杂度是O(n²) 其他常见复杂度 f(n)=nlogn时,时间复杂度为O(nlogn...时间复杂度比较 嗯,我们再回头看下下面的图片: image.png 通过图片直观的体现,能够得到常用的时间复杂度按照消耗时间的大小从小到大排序依次是: O(1)n)<O(nlogn

    1.2K20

    时间复杂度

    算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。 算法复杂度分为时间复杂度和空间复杂度。...其作用: 时间复杂度是指执行算法所需要的计算工作量; 空间复杂度是指执行这个算法所需要的内存空间。 常数时间的操作:一个操作如果和数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。...时间复杂度为一个算法流程中,常数操作数量的指标。常用O(读作big O)来表示。...4....+3+2+1)次,每次操作是一个常数时间操作记为O(1)(读作bigO(1)) 所以整个时间化简复杂度应该是(N^2 /2+N+1)*O(1),也就是(aN^2+bN+1)*O(1) image.png...这次算法时间复杂度应去掉低阶项bN+1和N的系数A f(N)=N^2, O(f(n))=O(N^2) 评价一个算法流程的好坏,先看时间复杂度的指标,然后再分析不同数据样本下的实际运行时间,也就是常数项时间

    41030
    领券