开题和答辩在即,PPT做的还是不能让自己,尤其是导师满意,怎么办?如果你有这个情况,不妨试一下下面三个神器,让你的PPT更加完美。
多模态大模型 Multimodal LLM (MLLM) 相关研究致力于实现通用的图片理解,其中类别多样、文字丰富且排版复杂的文档图片一直是阻碍多模态大模型实现通用的痛点。当前爆火的多模态大模型QwenVL-Max, Gemini, Claude3, GPT4V都具备很强的文档图片理解能力,然而开源模型在这个方向上的进展缓慢,距离这些闭源大模型具有很大差距 (例如DocVQA上开源7B SOTA 66.5,而Gemini Pro 1.5为86.5)。
在人机交互方面,大多人想到的都是语音交互,毕竟这是人类之间运用率最高的交流方式,且语音识别、自然语言理解等技术目前也发展的相当不错。 但是,我们也不得不忽视这样一个事实:我们每天都被文字所包围,像每天
其实就几个步骤: 1:用程序先把所有验证码(已知的,单个的)的灰度值放入一个数组 2:分割未知验证码,把未知验证码的一个一个数字或字母分割出来 3:分别取分割验证码的 灰度值 4:将分割验证码的灰度值与数组中的灰度值进行匹配,匹配程度最大的,即可能就是该码
随着人工智能的火速发展,如今人们在图像问题上面有了十足的成果了。给大家看几张图,大家可以猜一猜这些图片中哪些是真实的照片,哪些是程序生成的图片?
导读:验证码作为网络安全的第一道屏障,其重要程度不言而喻。当前,卷积神经网络的高速发展使得许多验证码的安全性大大降低,一些新型验证码甚至选择牺牲可用性从而保证安全性。针对对抗样本技术的研究,给验证码领域带来了新的契机,并已应用于验证码反识别当中,为这场旷日持久攻防对抗注入了新的活力。
近年来,图像补全问题在应用深度学习技术的条件下已经实现了较好的补全效果,甚至于人眼也难以分辨。故而,该技术也已经成为图像补全问题上的一个研究热点。同时,如何修改对抗生成网络以使其更好的适应图像补全问题来构造更有效的生成模型已经得到了越来越多的关注。人脸补全作为图片补全问题的一个分支,是一种常见的人脸图像编辑技术,它也可以用来编辑人脸属性。生成的人脸图像既可以与原始人脸图像一样精确,也可以与未遮挡人脸图像在内容上保持一致,以使补全的图像看起来具有真实的视觉感受。
之前详细介绍过身份证号码的由来身份证号码的秘密 ,号码最后一位Ⅹ表示罗马数字10,读作shí。
有时你遇到一篇古老的文献,PDF文档还是扫描版。又或者是遇到一幅网页版海报,上面的文字你完全看不懂。
由于最近在接触一些OCR的工作,所以本期《晓说AI》和大家分享一下我的一些总结,先从基本的概念讲起。如有错误,还请指正,谢你3千遍。如有疑问,欢迎留言,我会第一时间答复。
今天我们来聊一聊一个比较有趣的话题,那就是近年来在人工智能深度学习领域的热点--生成式对抗网络(GAN)。
OCR(Optical Character Recognition,光学字符识别)是指对图像进行分析识别处理,获取文字和版面信息的过程,是典型的计算机视觉任务,通常由文本检测和文本识别两个子任务构成。
近期多模态大模型(MLLM)在视觉文本理解领域取得了显著进展,比如开源模型InternVL 1.5、MiniCPM-Llama3-V 2.5、TextMonkey, 闭源模型GPT-4o、Claude等,甚至在某些方面展现了超越人类的能力。然而,当前的评估主要集中在英文和中文的语言环境中,对于更具挑战的多语种环境,研究还相对缺乏。
作者:poetniu,腾讯 WXG 应用研究员 微信(WeChat)作为 12 亿+用户交流的平台,覆盖全球各个地区、不同语言的用户,而微信翻译作为桥梁为用户间的跨语言信息交流提供了便利。目前微信翻译每天为千万用户提供数亿次的翻译服务,且团队技术持续钻研,累计发表数十篇顶会论文、夺得多项 WMT 冠军。随着翻译质量的提升,微信翻译的应用形态从文本逐步扩展到图片、语音、网页、文档、视频等众多场景。本文以微信图片翻译为例介绍近一年的技术优化。 文章术语 ViT:Vision Transformer NLP
编者按:近日,计算机视觉顶会 CVPR 2020 接收论文结果揭晓,从 6656 篇有效投稿中录取了 1470 篇论文,录取率约为 22%。中科院VIPL实验室共七篇论文录取,内容涉及弱监督语义分割、活体检测、手势识别、视觉问答、行人搜索、无监督领域自适应方法等方面,本文将予以详细介绍。
本文介绍了OCR(光学字符识别)技术的基本概念、发展历程、主要应用领域,以及基于深度学习的OCR识别框架。与传统OCR相比,基于深度学习的OCR识别框架减少了三个步骤,降低了因误差累积对最终识别结果的影响。
本系列将分为 8 篇 。本次为第 6 篇 ,介绍在计算机视觉中使用广泛并且十分基础的卷积神经网络 。
只见它完全没回答图片内容,而是直接开始执行“神秘”代码,然后用户的ChatGPT聊天记录就被暴露了。
就像许多其他计算机视觉问题,该领域还缺乏一个显而易见或者“做好的”方法,这意味着目标检测仍然有很大的进步空间。
本文是翻译自Object detection: an overview in the age of Deep Learning - Tryolabs Blog (http://t.cn/RNf1Ap9)。这篇文章主要是对深度学习目标检测进行概览,并不深入,适合那些想了解深度学习目标检测方向的读者。 从简单的图像分类到3D姿势识别,计算机视觉领域从来不缺乏有趣的问题。其中,我们最感兴趣的,也投入精力去研究的领域之一就是目标检测。就像许多其他计算机视觉问题,该领域还缺乏一个显而易见或者“做好的”方法,这意味着目
【导读】大家好,我是泳鱼。一个乐于探索和分享AI知识的码农!想必大家都听说过——图像领域大火的深度生成模型Diffusion Model,为了让大家快速了解 Diffusion 原理,这篇文章我们通过图解的方式。希望对你有所帮助,让你在学习和应用AIGC技术的道路上更进一步!
目前的文字识别主要有两方面的研究。首先是传统的文字识别,也就是文档中的文字识别,主要是OCR技术,其技术已经比较成熟,效果也比较稳定。另一方面是基于场景的文字识别,也就是图片中的文字识别,即将图片里的文字转化成人类可以理解的语言。这个过程需要实现以下目标:获得图片中文字出现的位置,包括文本的起始位置、结束位置和上下高度;将所在位置的图片所包含的文本数据转化成人们可以理解的信息。这整个过程就是文字识别。
选文|姚佳灵 文字部分翻译|吴怡雯 图片翻译及制图|田晋阳 ◆ ◆ ◆ 前言 你知道回归的概念大约是在200年前提出来的吗? 直到我决定涉足分析学的光辉历史,我也是不知道的。是的!如今我们在用的一些概念都是几个世纪前提出的。在我回顾这段历史的时候,发现那些真正的天才,他们天生渴望分享知识和挑战那些改变世界未来的概念。 通过阅读他们的人生故事,我发现这些天才身上都有一个共同点。那就是所有的这些天才有着强烈的刨根问底的精神,比如:他们永远不会满足自己所知道的。相反,他们感兴趣的是为什么事情会如此这般地发
今年,diffusion model和相关的定制化(personalization)的工作越来越受人们欢迎,例如DreamBooth,Textual Inversion,Custom Diffusion等,该类方法可以将一个具体物体的概念从图片中提取出来,并加入到预训练的text-to-image diffusion model中,这样一来,人们就可以定制化地生成自己感兴趣的物体,比如说具体的动漫人物,或者是家里的雕塑,水杯等等。
这是学习笔记的第 2423篇文章 关于职级晋升的ppt内容,自己也看过不少同学和行业内朋友的,也提供了一些改进的建议,自己这两天做了下总结,还是希望能够对大家也有一些帮助,当然提出问题容易,实际情况和我所说的会有一些差别,大家也不要对号入座,本质上是希望能够提供一些改进建议。我的改进建议分为基本规则、内容格式、内容形式和锦上添花四个类别。 一、遵守基本规则 1. 不使用统一的ppt模板 除非自选的模式效果很突出 2. 随意调整目录结构内容 比如目录结构包括4部分,自己调整为3部分 3. 答辩超
如今,随着数字技术的发展与革新,深度学习在计算机视觉领域上得到越来越广泛应用,并出现在日常工作生活的各个场景之中,如人脸识别、物体的分类与检测等。这些应用都是基于视觉领域单一模态进行的,但其实现实世界并不局限于视觉这单一模态,听觉、语言文字也是现实世界的重要组成部分,仅凭单一模态可能无法对事物类型进行完美的判断。
个别人发言的提醒功能是一个刚需,不过微信这个只允许一个群设置 4 个特别关注的群成员。
人脸识别所面临的一个挑战就是你需要解决一次学习问题,这意味着在大多数人脸识别应用中,你需要通过单单一张图片或者单单一个人脸样例就能去识别这个人。
写在前面 视觉语言预训练提高了许多下游视觉语言任务的性能,例如:图文检索、基于图片的问答或推理。有朋友要问了,除了在公开的学术任务上使用更大的模型/更多的数据/技巧把指标刷得很高,多模态预训练模型有什么实际应用呢? 为此,字节跳动 AI Lab Research 团队提出了X-VLM,首次提出学习多粒度的视觉和语言对齐。实验证明,这种预训练方法十分高效,模型规模无需很大,预训练数据无需很多, 仅216M参数量的X-VLM就能在广泛的多模态任务上获得了十分优秀的表现,例如:图像文本检索、基于图片的问答或推
朋友小君是一家创业公司老板,最近这段时间总是抱怨自己公司每天要处理的文件又多又杂,员工工作效率因此被拖慢了不少。
在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择。当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同。
导读:作者系腾讯QQ研发中心——CV应用研究组的totoralin。本文主要介绍基于深度学习的文档重建框架,通过文档校正、版面分析、字体识别和阅读排序将纸质文档智能转成可编辑的电子文档。相比较传统的OCR技术,更加完整地恢复出文档关键图表等内容,提高用户文档处理的效率。 1、相关背景 随着知识爆炸,借助纸质媒体、网络媒体等途径每天我们都在接触大量的信息。但是当我们发现某些信息是有启发性、有价值的,又苦于如何将这些信息沉淀下来。由于这些信息载体丰富多样,有的是纸质书有的是网页报道有的是PDF电子书,没有
现在使用安卓手机的人并不少,有时在工作生活中,需要利用安卓手机将图片中的文字识别提取出来,这个时候你会吗?相信很多人的答案是否定的,那么安卓手机如何识别图片中的文字呢?下面我们就一起来看看吧。
翻译 | 张建军 出品 | 人工智能头条(公众号ID:AI_Thinker) 在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择。当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同。 每个模型的好坏是通过评价它在某个数据集上的性能来判断的,这个数据集通常被叫做“验证/测试”数据集。这个性能由不同的统计量来度量,包括准确率( accuracy )、精确率( precision )、召回率( recall )等等。选择我们会根据某个特定的应用场景来选择相应的统计量。而对每个应用来说,找到
计算机视觉(Computer Vision)包含很多不同类别的问题,如图片分类、目标检测、图片风格迁移、人工图片合成等等。
在隐私计算大规模应用落地的关键节点,以下这些问题您是否也有一样的困惑及思考? 从标准化和测评的行业全局性视角看,目前对于「隐私计算」,学术界和产业界都形成了哪些共识? 对于隐私计算产品是否有一定的共识,比如落地产业界是否一定要做硬件? 怎么看隐私计算领域相关公司开源,对于行业标准化和共识的影响? 隐私计算真的需要那么多公司吗?需要那么多的技术解决方案吗? 隐私计算的技术方案会不会随着产业落地,进一步收敛? 对于隐私计算人才的培养,学术界和产业界是否有结构性的供给需求错位? 此次 WAIC2022 第二届
针对现有的扩散模型在文生图过程中会忽视promp中的一些物体(在多物体的情况下),或者对一些描述缺少约束(对某个物体的描述可能会错误分配到其他物体上)的问题,本文使用一个基于注意力的GSN,称之为Attend-and-Excite,引导模型细化交叉注意力单元,以关注文本提示中的所有主题并加强(或激发)它们的激活,从而鼓励模型生成文本提示中描述的所有主题。
在本教程中,我们将介绍使用图改改网站来修改图片中的文字的步骤和操作。图改改是一个方便易用的图片编辑平台,提供了文字识别和编辑功能,让您能够轻松地修改图片中的文字内容。
摘要:在日常生活工作中,我们难免会遇到一些问题,比如自己辛辛苦苦写完的资料,好不容易打印出来却发现源文件丢了;收集了一些名片,却要一个一个地录入信息,很麻烦;快递公司的业务越来越好,但每天需要花费很多时间登记录入运单,效率非常的低。
平时大家在办公期间经常会用到一些图片以及表格内容,有时候会需要把图片中的文字转换成表格,有时候也需要把一些表格和图像转换成图片,这种转换格式的处理对许多人来说可能比较复杂。但是确实很多工作当中都需要用到的一些专业技巧,现在就来了解一下图片的文字怎么处理变成表格。
2018年3月27日腾讯云云+社区联合腾讯云智能图像团队共同在客户群举办了腾讯云OCR文字识别——智能图像分享活动,活动举办期间用户耐心听分享嘉宾的介绍,并提出了相关的问题,智能图像团队的科学家和工程师也耐心解答可用户的疑问。以下就是活动分享的全部内容。
大数据文摘作品,转载要求见文末 翻译 | 姜范波 Aileen 导读: 2014年,还在谷歌做暑期实习生的Ian Goodfellow开发实施了阅读街景图中路标的数字的方法。如今,新的一群谷歌实习生借助深度学习和TPU的强大运算能力完善了大神当年的算法。 新的机器学习框架下,谷歌地图可以准确识别超过800亿战的街景视图图片中的文字, 为十多亿谷歌地图用户创造更好的体验。后台回复“谷歌”下载论文全文。 Ian Goodfellow自己也发推特支持谷歌地图新算法,缅怀当年自己做实习生的创作 识别并提取图片有效信
背景介绍: 文字识别提取是一种通过计算机技术将图片中的文字转化为可编辑和可搜索的文本的过程。在计算机视觉和自然语言处理领域,文字识别在很多应用中起着至关重要的作用。本篇技术博客将带领大家使用Python语言实现文字识别提取的过程。 步骤一:安装依赖库 要实现文字识别提取,我们需要使用到一些Python第三方库。首先,我们需要安装以下依赖库:
文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号。在过去的十几年中,研究人员一直在探索如何能够快速准确的从图像中读取文本信息,也就是现在OCR技术。
当下数字化时代,无论是日常工作还是生活,是互联网从业者还是其他传统行业从业者,对科技工具的依赖也越来越重,文字翻译渠道众多,但图片文字翻译却很少。
本页面收集了大量深度学习项目图像处理领域的代码链接。包括图像识别,图像生成,看图说话等等方向的代码,以便大家查阅使用。 图像生成 绘画风格到图片的转换:Neural Style https://lin
大家好,又见面了,我是你们的朋友全栈君。 文章目录 多模态技术基础 1,多模态融合架构(神经网络模型的基本结构形式) 1.1联合架构 1.2协同架构 1.3编解码架构(自监督) 2,多模态融合方法 2.1早期融合 2.2 晚期融合 2.3混合融合 3,模态对齐方法 3.1显式对齐方法 3.2隐式对齐方法 4,开放数据与资源 多模态深度学习综述:网络结构设计和模态融合方法汇总 基于注意力机制的融合方法 基于双线性池化的融合办法 应用1:多模态摘要(综合多模态信息生成内容摘要) 多模态摘要种类 多模态表
领取专属 10元无门槛券
手把手带您无忧上云