首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

java字符串的拆分_Java中的字符串分割 .

大家好,又见面了,我是你们的朋友全栈君。 java中的split函数和js中的split函数不一样。...Java中的我们可以利用split把字符串按照指定的分割符进行分割,然后返回字符串数组,下面是string.split的用法实例及注意事项: java.lang.string.split split 方法...要被分解的 String 对象或文字,该对象不会被split方法修改。 separator 可选项。字符串或正则表达式对象,它标识了分隔字符串时使用的是一个还是多个字符。...该值用来限制返回数组中的元素个数(也就是最多分割成几个数组元素,只有为正数时有影响) split 方法的结果是一个字符串数组,在 stingObj 中每个出现 separator 的位置都要进行分解。...“|” 分隔串时虽然能够执行,但是却不是预期的目的,得到的是每个字符的分割,而不是字符串,”\\|”转义后即可得到正确的字符串结果。

3.7K10

Pandas中字符串处理

Pandas字符串处理 Series.str字符串方法列表参考文档 文章目录 Pandas字符串处理 读取数据 获取Series的str属性,使用各种字符串处理函数 使用str的startswith...、contains等得到bool的Series可以做条件查询 需要多次str处理的链式操作 使用正则表达式的处理 Pandas的字符串处理: 使用方法:先获取Series的str属性,然后在属性上调用函数...: 获取Series的str属性,然后使用各种字符串处理函数 使用str的startswith、contains等bool类Series可以做条件查询 需要多次str处理的链式操作 使用正则表达式的处理...属性,使用各种字符串处理函数 df["bWendu"].str pandas.core.strings.StringMethods at 0x1af21871808> # 字符串替换函数 df["bWendu...29日 363 2018年12月30日 364 2018年12月31日 Name: 中文日期, Length: 365, dtype: object 问题:怎样将“2018年12月31日”中的年

28830
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的字符串处理函数

    在pandas中,通过DataFrame来存储文件中的内容,其中最常见的数据类型就是字符串了。针对字符串,pandas提供了一系列的函数,来提高操作效率。...这些函数可以方便的操作字符串类型的Series对象,对数据框中的某一列进行操作,这种向量化的操作提高了处理效率。pandas中的字符串处理函数以str开头,常用的有以下几种 1....去除空白 和内置的strip系列函数相同,pandas也提供了一系列的去除空白函数,用法如下 >>> df = pd.DataFrame([' A', ' B', 'C ', 'D ']) >>> df...拆分 通过str.split实现,可以指定拆分的次数,用法如下 >>> df = pd.DataFrame(['A_1_1', ' B_2_1', 'C_3_1', 'D_4_1']) # 默认按照指定的分隔符进行拆分...,完整的字符串处理函数请查看官方的API文档。

    2.8K30

    MySQL字符串的合并及拆分

    按照指定字符进行合并或拆分是经常碰到的场景,MySQL在合并的写法上比较简单,但是按指定字符拆分相对比较麻烦一点(也就是要多写一些字符)。本文将举例演示如何进行按照指定字符合并及拆分。...因此生产环境中 该参数建议调整为合适的大小。...(Tips:Oracle数据库中可以使用listagg或wm_concat等多种方式实现,也比较简单,可以自行测试) 02 拆分 按指定字符拆分字符串,也是比较常见的场景。...但是MySQL数据库中字符串的拆分没有其他数据库那么方便(其他数据库直接有拆分函数),且需要借助mysql库中的mysql.help_topic表来辅助实现。...03 结语 本文介绍了MySQL常用的合并及拆分方法,对于擅长写SQL的同学也可以使用其他方式实现,以便解决权限不足(例如拆分时需要使用mysql库的help_topic表的权限)等情况下的需求。

    6.4K10

    Python中字符串的一些方法回顾(拆分与合并)

    # python中字符串的一些方法回顾(拆分与合并) 字符串中split函数和join函数的使用 # 代码 # 假设:以下内容是从网络上抓取的 # 要求: # 1、将字符串中的空白字符全部去掉 # 2、...再使用" "作为分隔符,拼接成一个整齐的字符串 poem_str = "登鹤鹊楼\t 王之涣 \t 白日依山尽 \t\n 黄河入海流 \t\t 欲穷千里目\t\t更上一层楼" print(poem_str...) # 1、拆分字符串 split方法会返回列表 poem_list = poem_str.split() print(poem_list) # 2、合并字符串 result = " ".join...(poem_list) print(result) # 运行结果 原始字符串: 登鹤鹊楼 王之涣 白日依山尽 黄河入海流 欲穷千里目 更上一层楼 拆分字符串后: ['登鹤鹊楼',...'王之涣', '白日依山尽', '黄河入海流', '欲穷千里目', '更上一层楼'] 合并字符串后: 登鹤鹊楼 王之涣 白日依山尽 黄河入海流 欲穷千里目 更上一层楼

    2.3K30

    5个例子学会Pandas中的字符串过滤

    在本文中,我介绍将学习 5 种可用于过滤文本数据(即字符串)的不同方法: 是否包含一系列字符 求字符串的长度 判断以特定的字符序列开始或结束 判断字符为数字或字母数字 查找特定字符序列的出现次数 首先我们导入库和数据...我们将使用不同的方法来处理 DataFrame 中的行。第一个过滤操作是检查字符串是否包含特定的单词或字符序列,使用 contains 方法查找描述字段包含“used car”的行。...但是要获得pandas中的字符串需要通过 Pandas 的 str 访问器,代码如下: df[df["description"].str.contains("used car")] 但是为了在这个DataFrame...例如,我们可以选择以“A-0”开头的行: df[df["lot"].str.startswith("A-0")] Python 的内置的字符串函数都可以应用到Pandas DataFrames 中。...5 种不同的 Pandas DataFrames 方式。

    2K20

    Pandas中的对象

    安装并使用PandasPandas对象简介Pandas的Series对象Series是广义的Numpy数组Series是特殊的字典创建Series对象Pandas的DataFrame对象DataFrame...是广义的Numpy数组DataFrame是特殊的字典创建DataFrame对象Pandas的Index对象将Index看作不可变数组将Index看作有序集合 安装并使用Pandas import numpy...as np # 检查pandas的版本号 import pandas as pd pd....Pandas对象简介 如果从底层视角观察Pandas,可以把它们看成增强版的Numpy结构化数组,行列都不再是简单的整数索引,还可以带上标签。...先来看看Pandas三个基本的数据结构: Series DataFrame Index Pandas的Series对象 Pandas的Series对象是一个带索引数据构成的一维数组,可以用一个数组创建Series

    2.7K30

    Pandas中的数据分类

    --MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...0 语文 1 数学 1 数学 0 语文 0 语文 1 数学 1 数学 0 语文 dtype: object type(df1) # Series数据 pandas.core.series.Series...cat.values s ['语文', '数学', '语文', '语文', '语文', '数学', '语文', '语文'] Categories (2, object): ['数学', '语文'] type(s) pandas.core.arrays.categorical.Categorical...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \* 2, dtype="category") data4 0

    8.6K20

    掌握pandas中的transform

    pandas中,transform是一类非常实用的方法,通过它我们可以很方便地将某个或某些函数处理过程(非聚合)作用在传入数据的每一列上,从而返回与输入数据形状一致的运算结果。...本文就将带大家掌握pandas中关于transform的一些常用使用方式。...图1 2 pandas中的transform 在pandas中transform根据作用对象和场景的不同,主要可分为以下几种: 2.1 transform作用于Series 当transform作用于单列...agg中的机制,会生成MultiIndex格式的字段名: ( penguins .loc[:, 'bill_length_mm': 'body_mass_g'] .transform...版本之后为transform引入了新特性,可以配合Cython或Numba来实现更高性能的数据变换操作,详细的可以阅读( https://github.com/pandas-dev/pandas/pull

    1.6K20

    Pandas中的数据转换

    中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...ljust() 相当于str.ljust rjust() 相当于str.rjust zfill() 等同于str.zfill wrap() 将长长的字符串拆分为长度小于给定宽度的行 slice() 切分...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510

    Python字符串必须会的基操——拆分和连接

    在本文中,您将学习一些最基本的字符串操作:拆分、连接和连接。您不仅会学习如何使用这些工具,而且会更深入地了解它们的工作原理。...拆分字符串 ----- 在 Python 中,字符串表示为str对象,它们是不可变的:这意味着不能直接更改内存中表示的对象。这两个事实可以帮助您学习(然后记住)如何使用.split()....您是否已经猜到字符串的这两个特性与 Python 中的拆分功能有何关系?如果您猜测这.split()是一个实例方法,因为字符串是一种特殊类型,那么您是对的!...在每个字符串中,我们.split()再次调用using,作为拆分字符,但这次我们只使用maxsplit前两个逗号进行拆分,而地址保持不变。...请记住,当您使用 时.split(),您将在要拆分的字符串或字符上调用它。

    2.8K30

    pandas中的loc和iloc_pandas loc函数

    大家好,又见面了,我是你们的朋友全栈君。...目录 pandas中索引的使用 .loc 的使用 .iloc的使用 .ix的使用 ---- pandas中索引的使用 定义一个pandas的DataFrame对像 import pandas as pd....loc[],中括号里面是先行后列,以逗号分割,行和列分别是行标签和列标签,比如我要得到数字5,那么就就是: data.loc["b","B"] 因为行标签为b,列标签为B,同理,那么4就是data...5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签,行列标签之间用逗号隔开,行标签与行标签之间,列标签与列标签之间用冒号隔开,记住,.loc...那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的 .iloc的使用 .iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是

    1.2K10

    Pandas中的10种索引

    作者:Peter 编辑:Peter 大家好,我是Peter~ 今天给大家一片关于Pandas的基本文章:9种你必须掌握的Pandas索引。...索引在我们的日常生活中其实是很常见的,就像: 一本书有自己的目录和具体的章节,当我们想找某个知识点,翻到对应的章节即可; 也像图书馆中的书籍被分类成文史类、技术类、小说类等,再加上书籍的编号,很快就能够找到我们想要的书籍...在Pandas中创建合适的索引则能够方便我们的数据处理工作。 [e6c9d24ely1h0dalinfwhj20lu08e3yq.jpg] <!...pd.Index Index是Pandas中的常见索引函数,通过它能够构建各种类型的索引,其语法为: [e6c9d24ely1h0gmuv2wmmj20x60detah.jpg] pandas.Index...的版本中,上面3个函数全部统一成了pd.NumericIndex方法。

    3.6K00
    领券