遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...(inp) print(df) 1 2 3 4 5 6 按行遍历iterrows(): for index, row in df.iterrows(): print(index) # 输出每行的索引值..., ‘c1’), getattr(row, ‘c2’)) # 输出每一行 1 2 按列遍历iteritems(): for index, row in df.iteritems(): print
这样,我们分析json的结构就方便了许多。 使用python解析json python的json库可以将json读取为字典格式。...我们可以先把它拆掉,然后转化成一个DataFrame: load_dict = load_dict['mainData'] #拆第一层花括号 data_raw = pd.DataFrame(columns...对dict的第一层key进行循环 list2=[j[i] for j in df[col_name]] # 存储对应上述key的value至列表推导式 df[i]=list2 # 存储到新的列中 df.drop...(col_name,axis=1,inplace=True) # 删除原始列 return df ### 遍历整个dataframe,处理所有值类型为dict的列 def json_parse(df):...总结一下,解析json的整体思路就是 ①将json读入python转化为dict格式 ②遍历dict中的每一个key,将key作为列名,对应的value作为值 ③完成②以后,删除原始列,只保留拆开后的列
需要掌握的主要有两个方法,一个是 DataFrame.insert() 方法,用来增加对应的列,另一个是 DataFrame.pivot_table() 方法。...的列取名,如 column=‘新的一列’ value : int ,array...也可以按列进行统计 aggfunc={'c1' : numpy.mean, 'c2' : numpy.sum} fill_value : 将缺失值替换的值,幽灵将 Nan 换成 0 : fill_value...data3 = data[["用途", "贷款金额", "单位3", "分成比例3"]] # 将三组内容,重新命名之后合成一个新表 data1 = data1.rename(columns={"单位1...=True) # 将数据中的空值清除 data4 = data4.dropna() # 插入新的数据 # 1. insert() 方法 data4.insert(2, "分成百分比", data4[
你可以将每个CSV文件读取成DataFrame,将它们结合起来,然后再删除原来的DataFrame,但是这样会多占用内存且需要许多代码。 更好的方式为使用内置的glob模块。...将一个字符串划分成多个列 我们先创建另一个新的示例DataFrame: ? 如果我们需要将“name”这一列划分为三个独立的列,用来表示first, middle, last name呢?...将一个由列表组成的Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ? 这里有两列,第二列包含了Python中的由整数元素组成的列表。...通过使用concat()函数,我们可以将原来的DataFrame和新的DataFrame组合起来: ? 18....这将告诉我们没定订单的总价格和数量。 19. 将聚合结果与DataFrame进行组合 让我们再看一眼orders这个DataFrame: ? 如果我们想要增加新的一列,用于展示每个订单的总价格呢?
”; 单元格分拆完成后,把所有分拆出去的单元格内容追加到A列当前内容的后面; 然后对A列数据进行分类汇总,汇总方式为计数,分类汇总结果保存到Excel文件:F:\AI自媒体内容\AI行业数据分析\AI行业数据来源...\d+', '', str(x)).strip()) # 初始化一个列表存储拆分后的数据 split_data = [] # 分拆单元格内容 http://logging.info("分拆单元格内容")...in cell: split_items = cell.split() else: split_items = [cell] split_data.append(split_items) # 创建一个新的...DataFrame 用于存储拆分后的内容 split_df = pd.DataFrame(split_data) # 将拆分后的内容合并回第一列 http://logging.info("合并拆分后的内容到第一列...http://logging.info("将拆分后的内容追加到第一列当前内容的后面") df_expanded = pd.DataFrame() df_expanded[first_column_name
DataFrames Pandas 的 DataFrame(数据表)是一种 2 维数据结构,数据以表格的形式存储,分成若干行和列。通过 DataFrame,你能很方便地处理数据。...从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...的索引值 类似地,我们还可以用 .set_index() 方法,将 DataFrame 里的某一列作为索引来用。...这返回的是一个新的 DataFrame,里面用布尔值(True/False)表示原 DataFrame 中对应位置的数据是否是空值。...,index 表示按该列进行分组索引,而 columns 则表示最后结果将按该列的数据进行分列。
注:该方法在机器学习或者深度学习中很有用,因为在模型训练前,我们往往需要将全部数据集按某个比例划分成训练集和测试集。该方法既简单又高效,值得学习和尝试。...一个字符串划分成多列 我们先创建另一个新的示例DataFrame: ? 如果我们需要将“name”这一列划分为三个独立的列,用来表示first, middle, last name呢?...如果我们只想保留第0列作为city name,我们仅需要选择那一列并保存至DataFrame: ? Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ?...通过使用concat()函数,我们可以将原来的DataFrame和新的DataFrame组合起来: ?...请注意,还有许多其他的选项你可以用来格式化DataFrame。 额外技巧 Profile a DataFrame 假设你拿到一个新的数据集,你不想要花费太多力气,只是想快速地探索下。
注:该方法在机器学习或者深度学习中很有用,因为在模型训练前,我们往往需要将全部数据集按某个比例划分成训练集和测试集。该方法既简单又高效,值得学习和尝试。...一个字符串划分成多列 我们先创建另一个新的示例DataFrame: 如果我们需要将“name”这一列划分为三个独立的列,用来表示first, middle, last name呢?...比如说,让我们以", "来划分location这一列: 如果我们只想保留第0列作为city name,我们仅需要选择那一列并保存至DataFrame: Series扩展成DataFrame 让我们创建一个新的示例...如果我们想要将第二列扩展成DataFrame,我们可以对那一列使用apply()函数并传递给Series constructor: 通过使用concat()函数,我们可以将原来的DataFrame和新的...最后一个例子: 现在,Volumn列上有一个条形图,DataFrame上有一个标题。 请注意,还有许多其他的选项你可以用来格式化DataFrame。
5# pd.concat(list)括号中传入的是一个DataFrame列表。 6# ignore_list=True表示忽略原有索引,重新生成一组新的索引。...2import xlsxwriter 3# 这一步相当于创建了一个新的"工作簿"; 4# "demo.xlsx"文件不存在,表示新建"工作簿"; 5# "demo.xlsx"文件存在,表示新建"工作簿...16)col_values(列数):获取每一个sheet表中每一列的数据; 2sheet1 = fh.sheets()[0] 3for col in range(fh.sheets()[0].ncols...1、将一个Excel表中的多个sheet表合并,并保存到同一个excel。 ?...五、一表拆分(按照表中某一列进行拆分) 1、将一个Excel表,按某一列拆分成多张表。 ?
Pandas提供了各种各样的DataFrame操作,但是其中许多操作很复杂,而且似乎不太平易近人。本文介绍了8种基本的DataFrame操作方法,它们涵盖了数据科学家需要知道的几乎所有操作功能。...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...可以按照与堆叠相同的方式执行堆叠,但是要使用level参数: df.unstack(level = -1)。 Merge 合并两个DataFrame是在共享的“键”之间按列(水平)组合它们。...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。
第一个步骤是只读取那些你实际上需要用到的列,可以调用usecols参数: ? 通过仅读取用到的两列,我们将DataFrame的空间大小缩小至13.6KB。...通过将continent列读取为category数据类型,我们进一步地把DataFrame的空间大小缩小至2.3KB。...你可以将每个CSV文件读取成DataFrame,将它们结合起来,然后再删除原来的DataFrame,但是这样会多占用内存且需要许多代码 更好的方式为使用内置的glob模块。...但是如果数据集中的每个文件包含的列信息呢? 这里有一个例子,dinks数据集被划分成两个CSV文件,每个文件包含三列: ? 同上一个技巧一样,我们以使用glob()函数开始。...这一次,我们需要告诉concat()函数按列来组合: ? 现在我们的DataFrame已经有六列了。 End.
按列从多个文件中构建DataFrame 上一个技巧对于数据集中每个文件包含行记录很有用。但是如果数据集中的每个文件包含的列信息呢?...将一个字符串划分成多个列 我们先创建另一个新的示例DataFrame: df = pd.DataFrame({'name':['John Arthur Doe', 'Jane Ann Smith'],...将一个由列表组成的Series扩展成DataFrame 我们创建一个新的示例DataFrame: df = pd.DataFrame({'col_one':['a', 'b', 'c'], 'col_two...将聚合结果与DataFrame进行组合 我们再看一眼orders这个DataFrame: orders.head(10) 如果我们想要增加新的一列,用于展示每个订单的总价格呢?...请注意,还有许多其他的选项你可以用来格式化DataFrame。 额外技巧:Profile a DataFrame 假设你拿到一个新的数据集,你不想要花费太多力气,只是想快速地探索下。
最后,你会学习给样本分层,并将数据集拆分成测试集与训练集。...25% 2.000000 50% 3.000000 75% 4.000000 max 8.000000 DataFrame对象的索引标明了描述性统计数据的名字,每一列代表我们数据集中一个特定的变量。...我们还使用了DataFrame的.append(...)方法:有一个DataFrame对象(例子中的sample),将另一个DataFrame附加到这一个已有的记录后面。...sample(n=np.round(strata_expected_counts[bed])), ignore_index=True ) 04 将数据集拆分成训练集、交叉验证集和测试集 要建立一个可信的统计模型...我们先将原始的数据集分成两块,一块是因变量y,一块是自变量x: # 选择自变量和因变量 x = data[['zip', 'beds', 'sq__ft']] y = data['price'] 然后就可以拆了
https://blog.csdn.net/sinat_26917383/article/details/52291677 先学了R,最近刚刚上手python,所以想着将python和R...如果选中也是很讲究,这个比R里面的dataframe要复杂一些: 两列:用irow/icol选中单个;用切片选择子集 .ix/.iloc 选择列: #---1 利用名称选择列--------- data...简单统计量/计数 df.mean(axis=0,skipna=True) =R=apply(df,2,mean) #df中的pop,按列求均值,skipna代表是否跳过均值axis=0,skipna=True...) =R=apply(df,2,mean) #df中的pop,按列求均值,skipna代表是否跳过均值 这个跟apply很像,返回的是按列求平均。..., col_level=0, col_fill='') #inplace,是否删除原索引 #drop,删除原索引后,时候生成新的Index列 可以来看一下这个函数的效果: data2=pd.DataFrame
当许多人开始踏足数据分析领域时,他们常常会对选择何种工具感到迷茫。在这个充满各种选项的时代,为什么会有这么多人选择 Pandas 作为他们的数据分析工具呢?这个问题似乎简单,但背后涉及了许多关键因素。...DataFrame的一列就是Series,Series可以转化为DataFrame,调用方法函数to_frame()即可 Series 是 pandas 中的一种数据结构,可以看作是带有标签的一维数组。...底层使用C语言:Pandas的许多内部操作都是用Cython或C语言编写的,Cython是一种Python的超集,它允许将Python代码转换为C语言代码,从而提高执行效率。...0或’index’,表示按行删除;1或’columns’,表示按列删除。inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。...,如果填入整数n,则表示将x中的数值分成等宽的n份(即每一组内的最大值与最小值之差约相等);如果是标量序列,序列中的数值表示用来分档的分界值如果是间隔索引,“ bins”的间隔索引必须不重叠举个例子import
(axis=1),丢弃指定label的列,默认按行。。。...() 更新index或者columns, 默认:更新index,返回一个新的DataFrame # 返回一个新的DataFrame,更新index,原来的index会被替代消失 # 如果dataframe...df1.reindex(['a','b','c','d','e'], fill_value=0) # inplace=Ture,在DataFrame上修改数据,而不是返回一个新的DataFrame...","California"] df2 = df1.reindex( columns=states ) set_index() 将DataFrame中的列columns设置成索引index 打造层次化索引的方法...# 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级 # inplace=True 在原数据集上修改的 adult.set_index(['race','sex
pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。...通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。...'display.width', 200)pd.set_option('display.max_colwidth', 20)pd.set_option('display.max_rows', 100)将列的名字包含空格的替换成下划线
Series与数字相加时,与DataFrame相同,也是将Series中的每一个数都与指定数字相加,返回一个新的Series。 四、两个DataFrame算术运算 1....两个DataFrame相加,如果DataFrame的形状和对应的索引都一样,直接将对应位置(按行索引和列索引确定位置)的数据相加,得到一个新的DataFrame。 2....如果Series的索引与DataFrame的列索引相同,会将Series依次与DataFrame中的每一行数据进行运算,得到一个新的DataFrame。 2....如果Series的索引与DataFrame的行索引对应,要使Series按列与DataFrame运算,可以将axis参数设置成0或'index',这样会将Series依次与DataFrame中的每一列数据进行运算...其中Series可以按行运算,也可以按列运算,取决于axis参数。 ? fillna()函数的用法也一样,对运算结果进行空值填充。
DataFrame set_index() 将DataFrame中的列columns设置成索引index 打造层次化索引的方法 reset_index() 将使用set_index()...默认:更新index,返回一个新的DataFrame。...=states ) 4.2 设置 set_index():将DataFrame中的列columns设置成索引index。...既是取消层次化索引,将索引变回列,并补上最常规的数字索引。...''' 6.2 修改 修改DataFrame中的某一元素 df['列名'][行序号(index)] = "新数据"
计算并集 isin 计算一个指示各值是否都包含在参数集合中的布尔型数组 delete 删除索引i处的元素,并得到新的Index drop 删除传入的值,并得到新的Index insert 将元素插入到索引...pow, rpow 用于指数(**)的方法 它们每个都有一个副本,以字母r开头,它会翻转参数。...,将函数应用到由各列或行所形成的一维数组上。...要对行或列索引进行排序(按字典顺序),可使用sort_index方法,它将返回一个已排序的新对象: import pandas as pd obj = pd.Series(range(4), index...计算Series中的唯一值数组,按发现的顺序返回 value_counts 返回一个Series,其索引为唯一值,其值为频率,按计数值降序排列 有时,你可能希望得到DataFrame中多个相关列的一张柱状图
领取专属 10元无门槛券
手把手带您无忧上云