首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

按性别统计名字数量,显示前10名

相关·内容

  • Neurology:患有非流利性原发性失语症的英语母语者和意大利母语者的口语产出差异

    失语症的特征是部分或全部丧失口头或书面沟通的能力。失语症患者可能在说话、阅读、写作、识别物体名称或理解他人所说的内容方面存在困难。常见的失语症是由脑损伤引起的,如在创伤事故或中风时的大脑缺氧。它也可能是由脑瘤、阿尔茨海默病或脑炎等感染引起的。失语症可能是暂时的,也可能是永久性的。失语症不包括因失去肌肉控制而造成的语言障碍。失语症可以根据其临床表现或者受损部位进行分类,其中,原发性进行性失语症(PPA)被定义为病人进行性、有限度的语言障碍,病程迁延多年,无占位病变、梗死或其他脑部病变可解释其临床表现,语言障碍为病程中唯一或突出的神经系统异常。

    02

    NPP:结构MRI数据的生理性别分类显示跨性别者女性的错误分类增加

    跨性别者(TIs)表现出不同于其生理性别和心理性别的大脑结构变化。本文结合多变量和单变量的分析方法,证实TIs的大脑结构不同于男性和女性。对1753名顺性别者(CG,就是从心理上认同自己的生理性别)健康被试,基于体素的形态测量预处理后得到灰质分割结果,用于训练(N=1402)和验证(20%,N=351)可以对生理性别进行分类的支持向量机分类器。作为第二次验证,对1104名抑郁症患者进行分类。第三次验证使用与CG样本匹配的跨性别者女性(生理性别男、心理性别女,TW)样本。最后,通过控制性取向、年龄和大脑总体积的单变量分析,比较了CG男性、女性和TW跨性别激素治疗(CHT)前后的大脑体积。将生理性别分类器应用于跨性别者样本,真阳性率显著降低(TPR-男性=56.0%)。有抑郁者(TPR(真实标签正确预测)-男性=86.9%)与无抑郁者(TPR-男性=88.5%)的TPR差异无统计学意义(P>0.05)。对跨性别者样本的单变量分析表明,TW治疗前后在壳核和脑岛,CG女性和CG男性的脑结构存在差异,与全脑分析的结果一致。作者的结果支持这样的假设,即TW(跨性别者女性)的脑结构不同于其生物学性别(男性)的脑结构,也不同于他们感知的性别(女性)的脑结构。这一发现证实了TIs大脑结构发生变化,导致了与CG个体的不同。

    02

    从黑盒到玻璃盒:fMRI中深度可解释的动态有向连接

    大脑网络的交互作用通常通过功能(网络)连接来评估,并被捕获为皮尔逊相关系数的无向矩阵。功能连接可以表示静态和动态关系,但这些关系通常使用固定的数据窗口选择来建模。或者,深度学习模型可以根据模型体系结构和训练任务灵活地从相同的数据中学习各种表示。然而,由深度学习模型产生的表示通常很难解释,并且需要额外的事后方法,例如,显著性映射。在这项工作中,我们整合了深度学习和功能连接方法的优势,同时也减轻了它们的弱点。考虑到可解释性,我们提出了一个深度学习架构,它反映了一个有向图层,它代表了模型所了解到的关于相关大脑连接的知识。这种结构可解释性的一个令人惊讶的好处是,显著提高了鉴别对照组、精神分裂症、自闭症和痴呆患者的准确性,以及从功能MRI数据中对年龄和性别的预测。我们还解决了动态有向估计的窗口大小选择问题,因为我们从数据中估计窗口函数,捕获了在每个时间点估计图所需的东西。我们展示了我们的方法与多个现有模型相比,它们的有效性,而不是我们以可解释性为重点的架构。使用相同的数据,但在他们自己的分类任务上训练不同的模型,我们能够估计每个被试的特定任务的有向连接矩阵。结果表明,与标准的动态功能连接模型相比,该方法对混淆因素具有更强的鲁棒性。我们的模型捕获的动态模式是自然可解释的,因为它们突出了信号中对预测最重要的信号间隔。该方法表明,感觉运动网络和默认模式网络之间的连接差异是痴呆症和性别的一个重要指标。网络之间的连接障碍,特别是感觉运动和视觉之间的连接障碍,与精神分裂症患者有关,然而,与健康对照组相比,精神分裂症患者表现出更高的默认模式网络内的功能连接。感觉运动网络的连接对痴呆和精神分裂症的预测都很重要,但精神分裂症更多地与网络之间的连接障碍相关,而痴呆生物标记物主要是网络内的连接。

    03

    建立脑影像机器学习模型的step-by-step教程

    机器学习的日益普及导致了一些工具的开发,旨在使这种方法的应用易于机器学习新手。这些努力已经产生了PRoNTo和NeuroMiner这样的工具,这并不需要任何编程技能。然而,尽管这些工具可能非常有用,但它们的简单性是以透明度和灵活性为代价的。学习如何编程一个机器学习管道(即使是一个简单的)是一个很好的方式来洞察这种分析方法的优势,以及沿着机器学习管道可能发生的扭曲。此外,它还允许更大的灵活性,如使用任何机器学习算法或感兴趣的数据模式。尽管学习如何为机器学习管道编程有明显的好处,但许多研究人员发现这样做很有挑战性,而且不知道如何着手。

    05

    Women in Machine Learning:人工智能的世界不能只有男人

    【新智元导读】单从性别的角度看,科技圈一直以来似乎都是男人的世界,女性存在感很低。这种性别上的失衡带来的远不止“不公平”那么简单,从人工智能的发展来看,男性数量一直占主导,会带来消极的影响:如果大家都在教计算机像男人一样处事,那么机器的世界观将会变得狭隘,可能还是充满偏见的。现在,AI领域中的女性榜样,比如李飞飞,已经开始行动,希望改变女性缺失的情况。 本月初,比尔·盖茨参加Recode大会并发表演讲。盖茨的妻子Melinda也出现在现场,他们谈到了一起做的慈善事业、移动支付以及亿万富翁放弃自己财产等话题

    04
    领券