遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...输出每一行 1 2 3 按行遍历itertuples(): getattr(row, ‘name’) for row in df.itertuples(): print(getattr(row..., ‘c1’), getattr(row, ‘c2’)) # 输出每一行 1 2 按列遍历iteritems(): for index, row in df.iteritems(): print
新建一个 dataframe : val conf = new SparkConf().setAppName("TTyb").setMaster("local") val sc = new SparkContext...(conf) val spark = new SQLContext(sc) val dataFrame = spark.createDataFrame(Seq( (1, 1, "2", "5"),...(3, 2, "36", "69"), (1, 3, "4", null) )).toDF("id", "label", "col1", "col2") 想根据 id 和 lable 来删除重复行,...即删掉 id=2 且 lable=2 的重复行。...利用 distinct 无法删除 dataframe.distinct().show() +---+-----+----+----+ | id|label|col1|col2| +---+-----+-
这个是最开始,我采用的是两个时间插件,其他也没啥,就是运营部门使用起来可能感觉太麻烦,为啥不能一次让我选了,还有说老是忘记选择结束时间,然后就有了我接下来的工作。。。...text/javascript" src="/assets/laydate/laydate.js"> 选择日期范围...dd' ,value: '2018-08-18' //必须遵循format参数设定的格式String,默认值:new Date() ,min: '2017-1-1'//min/max - 最小/大范围内的日期时间值...: 18, hours: 0, minutes: 0, seconds: 0} console.log(endDate); //得结束的日期时间对象,开启范围选择(range: true)才会返回。...: 18, hours: 0, minutes: 0, seconds: 0} console.log(endDate); //得结束的日期时间对象,开启范围选择(range: true)才会返回。
Python DataFrame如何根据列值选择行 1、要选择列值等于标量的行,可以使用==。...df.loc[df['column_name'] == some_value] 2、要选择列值在可迭代中的行,可以使用isin。...column_name'] >= A & df['column_name'] <= B 被解析为 df['column_name'] >= (A & df['column_name']) <= B 以上就是Python DataFrame...根据列值选择行的方法,希望对大家有所帮助。
需求是这样的: 共有三个时间选择器,后一个时间选择器要结合前面一个时间的范围值,去做时间判断,禁用前面所选时间,保证不可有重复时间 结果是这样子:(根据前者的结束时间,来禁用当前时间选择范围)...不多说:直接上代码:( 官方给的文档,全靠自己去猜,心累 ) 注意:在data(){} 定义当前对象,函数 注意:每次前者的时间选择器发生变化,需要把后面的时间选择器value = “ ”
最近项目遇到一个功能:用户只能查询最近180天的订单,而且每次只能选择7天范围的时间跨度。 类似下图所示: ? 解释: 最近180天很好理解,就是往前推180天。...每次只能选7天,是指选择的是10号,则以10号为基准点前推6天则是4号后推6天则是16号,选择的范围则是4号到16号(还得考虑180天的限制和今天日期的限制)。 示例: ?...时间范围为20天;2.单次时间跨度7天,我们分步实现: 1.时间范围为20天 let millisecondOfDay = 1 * 24 * 60 * 60 * 1000 data:{ pickerOptions...选择的是20日,前后加减6天范围就是7天了。但是此时还有2个问题: 选择的范围超过了20天的范围,比如上图的今天时间是9号,明显已经超过了限制不能选择9号之后的日期。...只要我选择一次时间跨度之后,限制就只能13天内选择(上图),若我想选择1号到4号则比较麻烦,得折腾几次,一步步的往前挪7天。 解决第一个问题: 用户选择日期时有三种情况: ?
<script language="javascript">
"访问 切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...切片类型与索引列类型不一致时,引发报错 2. loc/iloc,可能是除[]之外最为常用的两种数据访问方法,其中loc按标签值(列名和行索引取值)访问、iloc按数字索引访问,均支持单值访问或切片查询...与[ ]访问类似,loc按标签访问时也是执行范围查询,包含两端结果。...在DataFrame中,filter是用来读取特定的行或列,并支持三种形式的筛选:固定列名(items)、正则表达式(regex)以及模糊查询(like),并通过axis参数来控制是行方向或列方向的查询
切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...与[ ]访问类似,loc按标签访问时也是执行范围查询,包含两端结果 at/iat,loc和iloc的特殊形式,不支持切片访问,仅可以用单个标签值或单个索引值进行访问,一般返回标量结果,除非标签值存在重复...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。
特别是,它提供操纵数值表格和时间序列的数据结构和运算操作。它的名字衍生自术语“面板数据”(panel data),这是计量经济学的数据集术语,它们包括了对同一个体的在多个时期上的观测。...的使用方式 三、数据排序与查询 1、排序 例1:按语文分数排序降序,数学升序,英语降序 例2:按索引进行排序 2、查询 单条件查询 多条件查询 使用数据区间范围进行查询 使用条件表达式进行查询...data.sort_values() # 按数值排序 data.head( 5 ) # 查看前5行 data.tail( 3 )...c=data[['w','z']] # 取多列时需要用Dataframe的格式 data.loc['A'] # 取行名为'A'的行...data.tail(3) # 取尾三行 **data= data.iloc[2:, 2:20] # 选择2行开始、2-11列** [m, n] =
如果没有传递索引值,那么默认的索引将是范围(n),其中n是数组长度,即[0,1,2,3…. range(len(array))-1] - 1]。 ?...8、从字典创建DataFrame 从字典创建DataFrame,自动按照字典进行列索引,行索引从0开始。 ?...9、列选择 在刚学Pandas时,行选择和列选择非常容易混淆,在这里进行一下整理常用的列选择。 ? 10、行选择 整理多种行选择的方法,总有一种适合你的。 ? ? ?...13、聚合 可以按行、列进行聚合,也可以用pandas内置的describe对数据进行操作简单而又全面的数据聚合分析。 ? ?...14、聚合函数 data.function(axis=0) 按列计算 data.function(axis=1) 按行计算 ? 15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ?
0前面要加逗号,不然打印类型出来 a[:,0] #获取第一列,0后面加逗号 a[0,:] #按轴计算:axis=1 计算每一行的平均值 a.mean(axis=1) pandas二维数组:数据框(DataFrame...获取‘商品名称’这一列 salesDf.loc[:,'商品名称'] salesDf['商品名称'] #通过列表来选择某几列的数据 salesDf[['商品名称','销售数量']] #通过切片功能,获取指定范围的列...(5) #有多少行,多少列 salesDf.shape #查看每一列的数据类型 salesDf.dtypes 2.数据清洗 1)选择子集(本案例不需要选择子集) subSalesDf=salesDf.loc...','社保卡号'] ) #总消费次数:有多少行 totalI=kpi1_Df.shape[0] #第一步,按销售时间升序排序 kpil_Df=kpilDf.sort_value(by='销售时间',...ascending=True) #重命名行名(index) kpil_Df=kpil_Df.reset.index(drop=Ture) #获取时间范围 #最小时间值 startTime=kpil_Df.loc
好比Excel单元格按行和列位置寻址。 换句话说,DataFrame看起来很像SAS数据集(或关系表)。下表比较在SAS中发现的pandas组件。 ?...第6章,理解索引中详细地介绍DataFrame和Series索引。 导入包 为了使用pandas对象, 或任何其它Python包的对象,我们开始按名称导入库到命名空间。...DataFrame的.head()方法默认显示前5行。.tail()方法默认显示最后5行。行计数值可以是任意整数值,如: ? SAS使用FIRSTOBS和OBS选项按照程序来确定输入观察数。...下面的单元格显示的是范围按列的输出。列列表类似于PROC PRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。方括号[]是切片操作符。这里解释细节。 ? ?...另外,如果你发现自己想使用迭代处理来解决一个pandas操作(或Python),停下来,花一点时间做研究。可能方法或函数已经存在! 案例如下所示。
布尔索引 3.1.5 Series基本操作技巧 3.2 DataFrame 3.2.1 Dataframe简介 3.2.2 创建DataFrame对象 3.2.3 Dataframe:索引 1.选择行与列...2. df.loc[] - 按index选择行 3. df.iloc[] - 按照整数位置(从轴的0到length-1)选择行 4....:索引 Dataframe既有行索引也有列索引,可以被看做由Series组成的字典(共用一个索引) 选择列 / 选择行 / 切片 / 布尔判断 1.选择行与列 # 选择行与列 df = pd.DataFrame...data3)) print(data3,type(data4)) # 按照index选择行,只选择一行输出Series,选择多行输出Dataframe 输出为: 2. df.loc[] - 按index...选择行 # df.loc[] - 按index选择行 df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...在 Pandas 中,您需要更多地考虑控制 DataFrame 的显示方式。 默认情况下,pandas 会截断大型 DataFrame 的输出以显示第一行和最后一行。...在 Pandas 中,您需要在从 CSV 读取时或在 DataFrame 中读取一次时,将纯文本显式转换为日期时间对象。 解析后,Excel电子表格以默认格式显示日期,但格式可以更改。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...添加一行 假设我们使用 RangeIndex(编号为 0、1 等),我们可以使用 DataFrame.append() 在 DataFrame 的底部添加一行。
获取 DataFrame 中的一行或多行数据 要获取某一行,你需要用 .loc[] 来按索引(标签名)引用这一行,或者用 .iloc[],按这行在表中的位置(行数)来引用。 ?...同时你可以用 .loc[] 来指定具体的行列范围,并生成一个子数据表,就像在 NumPy里做的一样。比如,提取 'c' 行中 'Name’ 列的内容,可以如下操作: ?...交叉选择行和列中的数据 我们可以用 .xs() 方法轻松获取到多级索引中某些特定级别的数据。比如,我们需要找到所有 Levels 中,Num = 22 的行: ?...当然,这有的时候打击范围太大了。于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ?...比如,有这样3个 DataFrame: ? 我们用 pd.concat() 将它堆叠成一个大的表: ? 因为我们没有指定堆叠的方向,Pandas 默认按行的方向堆叠,把每个表的索引按顺序叠加。
在pandas中,我们可能有多个数据列,并且带有行和列的标签。pandas自身有很多内建方法可以简化从DataFrame和Series对象生成可视化的过程。...在DataFrame中,柱状图将每一行中的值分组到并排的柱子中的一组。...▲图9-19 用错误栏按天显示小费百分比 seaborn中的绘图函数使用一个data参数,这个参数可以是pandas的DataFrame。其他的参数则与列名有关。...▲图9-26 按星期几数值/时间/是否吸烟划分的小费百分比 除了根据'time'在一个面内将不同的柱分组为不同的颜色,我们还可以通过每个时间值添加一行来扩展分面网格(见图9-27): In [109]:...▲图9-27 根据时间/是否吸烟分面后按星期几数值划分的小费百分比 factorplot 支持其他可能有用的图类型,具体取决于你要显示的内容。
索引的不同选择 基础知识 属性访问 切片范围 按标签选择 按位置选择 通过可调用进行选择 结合位置和基于标签的索引 选择随机样本 带扩展的设置...时间跨度 转换为时间戳 生成时间戳范围 时间戳限制 索引 时间/日期组件 DateOffset 对象 与时间序列相关的实例方法 重新取样 时间跨度表示...在 按标签选择 中查看更多使用 DataFrame.loc() 或 DataFrame.at()。...请参阅按标签选择 使用DataFrame.loc() 或 DataFrame.at()。...请参阅按位置选择 使用DataFrame.iloc() 或 DataFrame.iat()。
Pandas 是基于 NumPy 构建的,这两大数据结构也为时间序列分析提供了很好的支持。...,DataFrame的每一列(行)都是一个Series,每一列(行)的Series.name即为当前列(或行)索引名。...(4)DataFrame 数据查询 数据查询的方法可以分为以下五类:按区间查找、按条件查找、按数值查找、按列表查找、按函数查找。 这里以df.loc方法为例,df.iloc方法类似。...("abc"), columns=list("xyz")) df 在前面已经调到过如何使用df.loc和df.iloc按照标签值去查询,这里介绍按照区间范围进行查找,例如:获取x轴上a、b的坐标 df.loc...①数据排序 在处理带时间戳的数据时,如地铁刷卡数据等,有时需要将数据按照时间顺序进行排列,这样数据预处理时能更加方便,或者按照已有的索引给数据进行重新排序,DataFrame提供了这类方法。
DataFrame是有多个数据表,每个列拥有一个label,DataFrame也拥有索引 ?...按值排序 ? 3.选择行和列 从DataFrame选择一个列,就得到了一个Series ? 和numpy类似,这里可以使用 [] ?...4.通过label选择 刚刚的DataFrame可以通过时间戳的下标(dates[0]=Timestamp(‘20170917’))来访问 ? 还可以多选 ?...5.通过整数下标选择 和Matlab完全一样 ? 选出3~4行, 0~1列 ? 左闭右开 也可以用list选择 ? 也可以用slice切片 ? 对单个元素 ?...copy()函数:复制DataFrame isin()函数:是否在集合中,并选出 ? Setting 为DataFrame增加新的列,按index对应 ?
领取专属 10元无门槛券
手把手带您无忧上云