首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用 Python 按行和按列对矩阵进行排序

在本文中,我们将学习一个 python 程序来按行和按列对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和按列排序。...创建一个函数 sortMatrixRowandColumn() 通过接受输入矩阵 m(行数)作为参数来对矩阵行和列进行排序。...调用上面定义的sortMatrixRowandColumn()函数,方法是将输入矩阵,m值传递给它,对矩阵行和列进行排序。...通过调用上面定义的 printingMatrix() 函数按行和按列排序后打印生成的输入矩阵。...此外,我们还学习了如何转置给定的矩阵,以及如何使用嵌套的 for 循环(而不是使用内置的 sort() 方法)按行对矩阵进行排序。

6.1K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《Pandas Cookbook》第02章 DataFrame基本操作1. 选取多个DataFrame列2. 对列名进行排序3. 在整个DataFrame上操作4. 串联DataFrame方法5. 在

    选取多个DataFrame列 # 用列表选取多个列 In[2]: movie = pd.read_csv('data/movie.csv') movie_actor_director...对列名进行排序 # 读取movie数据集 In[12]: movie = pd.read_csv('data/movie.csv') In[13]: movie.head() Out[13]: ?...: 137648 # 该数据集的维度 In[20]: movie.ndim Out[20]: 2 # 该数据集的长度 In[21]: len(movie) Out[21]: 4916 # 各个列的值的个数...Series再使用sum,返回整个DataFrame的缺失值的个数,返回值是个标量 In[32]: movie.isnull().sum().sum() Out[32]: 2654 # 判断整个DataFrame...# 用DataFrame和DataFrame进行比较 In[55]: college_self_compare = college_ugds_ == college_ugds_ college_self_compare.head

    4.6K40

    数据处理小技能(一)按照某一列取值大小对dataframe排序

    马拉松Day3的课程提了一个课后小作业,按照某列取值大小对数据框排序 这个是很常用的数据处理过程,在excel里只需要选择某列然后选择扩展区域就行,但是R中好像没有这个函数 之前每次都是用到现搜,但是别人的思路总是记不住的...,今天试着自己用这两天课程学到的写一个运算逻辑 #以iris数据为例,按照Sepal.Length数据从小到大排序 head(iris) # Sepal.Length Sepal.Width Petal.Length...,对向量中的每个元素命名,这里用来给数据增加标识符 x=sort(x) #默认decreasing=F,如果需要从大到小排序只需要修改这个参数即可 df1=iris[names(x),] 只需要4行代码...20240112更新,马拉松Day4学习了function的部分功能,试着把他封装为函数试了一下 sortbycol=function(data,name){ x=data[,name]...arrange(),果然归来仍是零基础,这个函数原来是实现这个功能的吗?

    17310

    java中的sort排序算法_vba中sort按某列排序

    大家好,又见面了,我是你们的朋友全栈君。 C++中提供了sort函数,可以让程序员轻松地调用排序算法,JAVA中也有相应的函数。...1.基本元素排序:Array.sort(排序数组名) package test; import java.util.*; public class main { public static void...可以使用Interger.intvalue()获得其中int的值 下面a是int型数组,b是Interger型的数组,a拷贝到b中,方便从大到小排序。capare中返回值是1表示需要交换。...和2差不多,都是重载比较器,以下程序实现了点的排序,其中x小的拍前面,x一样时y小的排前面 package test; import java.util.*; class point { int...如果只希望对数组中的一个区间进行排序,那么就用到sort中的第二个和第三个参数sort(a,p1,p2,cmp),表示对a数组的[p1,p2)(注意左闭右开)部分按cmp规则进行排序 发布者:全栈程序员栈长

    2.2K30

    C语言实例:实现对英文的12个月份按字母进行排序

    需求 C语言实现对英文的12个月份按字母进行排序 源码 // // @author: 冲哥 // @date: 2021/6/3 20:38 // @description:C语言实现对英文的12个月份按字母进行排序...March","April","May","June","July","August","September","October","November","December"}; printf("排序前...{ printf("%s ", month[i]); } printf("\n"); p = month; sort(p); printf("排序后...作比较时使用到了strcmp()函数 这里简单说下这个函数 「函数原型」:int strcmp(const char* stri1,const char* str2); 用于对两个字符串进行比较(区分大小写...) 「函数作用」:根据 ASCII 编码依次比较 str1 和 str2 的每一个字符,直到出现不到的字符,或者到达字符串末尾(遇见\0) 「函数返回值」: 如果返回值 < 0,则表示 str1 小于

    2.8K20

    史上最速解决:Power BI由按列排序导致的循环依赖

    引子 当我们在处理这样的数据时,想要进行排列时,会发现它并没有按照我们预想的按照1……9,10,11,12……这样的排序: 因为文本和数字在一起的列,数字只是文本。...如果我们想要按照预想的顺序排列,能做的应该也只有按列排序,因此我们将周数中的数字提取出来作为单独一列: 周数2 = MID([周数],6,10) 再选中[周数]列,点击“按列排序”,选择[周数2],...原因分析 因为[周数2]这一列是由[周数]生成的,因此对[周数]进行排序计算时,引擎需要计算按列排序的目标[周数2]这一列的大小以便排序,而在计算[周数2]的时候发现,它是由[周数]计算而来,这就产生了循环依赖...解决问题 我们仍然对这个表添加一列[周数2]: 刚才我们说过,[周数]对[周数2]按列排序是会导致循环依赖的。但是如果我再根据[周数]添加一列新列,它和[周数2]是否还存在循环依赖关系呢?...结论 当遇到因为按列排序而导致的循环依赖问题,可以再新建复制一列想要排序的列,这样两个都是由原列计算而来的列直接并没有直接关系,也就不存在循环依赖,因此可以放心地进行按列排序。

    4.4K10

    2.37 PowerBI数据建模-按列排序的副作用,ALL失效了

    使用ALL函数来计算占比,明明公式正确,返回的百分比却都是100%,百思不得其解,这是软件的Bug吗? 举例基于下表,计算每个班级的人数占比。...班级人数'[人数])总人数_Wrong = CALCULATE([人数],ALL('班级人数'[班级]))班级人数占比_Wrong = DIVIDE([人数],[总人数])异常结果如下:解决方案班级这一列使用了按列排序...,把班级字段拖入报表中的时候,实际上还拖入了一个看不到的班级排序字段,这样才能实现排序的效果。...这种情况下,ALL函数只用了一个字段,并没有彻底清除筛选,所以分母的总人数返回的还是每个班级的人数。把字段和排序字段都放到ALL的参数中,就会返回正确的结果。...本例把ALL的参数调整为班级和用于排序的班级排序字段,如下:总人数 = CALCULATE([人数],ALL('班级人数'[班级],'班级人数'[班级排序]))拓展按列排序还会有其他的副作用,比如判断某个被排序的字段是否被筛选

    3500

    Excel里的PP可以按列排序,但你知道它的缺陷吗?

    在我的文章、书或视频中,均介绍过Excel Power Pivot中的按列排序问题,通过按列排序,可以实现一列数据参照另一列的顺序进行排序,具体可以参考文章《PP-入门前奏:传统透视表无法完成的简单的排序问题...但是,这之前一直没有讲,这个功能其实是有个缺陷的:你只能按既定的升序进行排序,不能在生成透视表的时候选择降序。...那么,如果希望以降序的方式进行排序呢?该怎么办?...——这需要去调整参照排序列的具体内容,比如原本的参照是1,2,3,4……的,调整为-1,-2,-3,-4…… 总的来说,参照排序目前在Excel里实现的是一种相对固定的方式,但也是对Excel...原只能按照字段本身进行排序的一种很好的补充吧——同时,这个问题在Power BI里并不存在。

    1.3K20

    使用 Python 对波形中的数组进行排序

    在本文中,我们将学习一个 python 程序来对波形中的数组进行排序。 假设我们采用了一个未排序的输入数组。我们现在将对波形中的输入数组进行排序。...− 创建一个函数,通过接受输入数组和数组长度作为参数来对波形中的数组进行排序。 使用 sort() 函数(按升序/降序对列表进行排序)按升序对输入数组进行排序。...例 以下程序使用 python 内置 sort() 函数对波形中的输入数组进行排序 − # creating a function to sort the array in waveform by accepting...例 以下程序仅使用一个 for 循环且不带内置函数以波形对输入数组进行排序 - # creating a function to sort the array in waveform by accepting...结论 在本文中,我们学习了如何使用两种不同的方法对给定的波形阵列进行排序。与第一种方法相比,O(log N)时间复杂度降低的新逻辑是我们用来降低时间复杂度的逻辑。

    6.9K50

    Pandas使用DataFrame进行数据分析比赛进阶之路(二):日期数据处理:按日期筛选、显示及统计数据

    print(df['2010'].head()) # 获取某月的数据 print(df['2013-11'].head()) 输出结果: id questions answers...# 获取某个时期之前或之后的数据 # 获取2014年以后的数据 print(df.truncate(before='2014').head()) # 获取2013-11之前的数据 print(df.truncate...年以后的数据 print(df.truncate(before='2016-02-2').head()) 输出结果: id questions answers date...,但不统计 # 按月显示,但不统计 df_period_M = df.to_period('M').head() print(df_period_M) # 按季度显示,但不统计 df_period_Q...,并且统计 # 按年统计并显示 print(df.resample('AS').sum().to_period('A')) # 按季度统计并显示 print(df.resample('Q').sum()

    4.8K10

    GreenPlum和openGauss进行简单聚合时对扫描列的区别

    GreenPlum在PG优化器下针对列存表执行单列聚集时(无过滤条件),不管聚集中包含多少列,都需要将所有列扫描上来。比如select avg(id1) from t1。...扫描时,不仅将id1列的数据读取出来,还会将其他列的数据也读取上来。一旦列里有变长数据,无疑会显著拖慢扫描速度。 这是怎么做到的?在哪里设置的需要读取所有列?以及为什么要这么做?...函数对列进行提取,也就是targetlist和qual: 3、顺藤摸瓜,targetlist和qual来自哪里?...如果select id1 from t1,无聚合,那么入口的flag标签是CP_EXACT_TLIST,进入create_scan_plan后,use_physical_tlist函数依据该标签立即返回...5、openGauss的聚合下列扫描仅扫描1列,它是如何做到的?

    1K30

    超全的pandas数据分析常用函数总结:下篇

    5.3 按照特定列的值排序: 按照索引列进行排序: data.sort_index() 按照money的值进行排序: data.sort_values(by="money",ascending = True...数据提取 下面这部分会比较绕: loc函数按标签值进行提取,iloc按位置进行提取pandas.DataFrame.loc() 允许输入的值: 单个标签,例如5或’a’,(请注意,5被解释为索引的标签,...7.3 对结果进行计数求和 data.query('department=="饮料"').count() # 对饮料类型的数据进行筛选后计数 data.query('department...数据汇总 8.1 以department属性对所有列进行计数汇总 data.groupby("department").count() 输出结果: ?...8.2 以department属性分组之后,对id字段进行计数汇总 data.groupby("department")['id'].count() 输出结果: ?

    3.9K20

    python数据分析——数据的选择和运算

    How 提到了连接的类型 left_suffix 要从左框架的重叠列中使用的后缀 right_suffix 要从右框架的重叠列中使用的后缀 sort 对输出进行排序 【例】对于存储在本地的销售数据集...关键技术:可以利用行号索引和count()方法来进行计数,程序代码如下所示: 【例】对于给定的DataFrame数据,按索引值进行求和并输出结果。...关键技术:对于例子给定的DataFrame数据,按行进行求和并输出结果。...Dataframe的排序可以按照列或行的名字进行排序,也可以按照数值进行排序。 DataFrame数据排序主要使用sort_values()方法,该方法类似于sql中的order by。...按照数据进行排序,首先按照C列进行降序排序,在C列相同的情况下,按照B列进行升序排序。

    19310

    按列翻转得到最大值等行数(查找相同的模式,哈希计数)

    题目 给定由若干 0 和 1 组成的矩阵 matrix,从中选出任意数量的列并翻转其上的 每个 单元格。 翻转后,单元格的值从 0 变成 1,或者从 1 变为 0 。...返回经过一些翻转后,行上所有值都相等的最大行数。 示例 1: 输入:[[0,1],[1,1]] 输出:1 解释:不进行翻转,有 1 行所有值都相等。...示例 2: 输入:[[0,1],[1,0]] 输出:2 解释:翻转第一列的值之后,这两行都由相等的值组成。...示例 3: 输入:[[0,0,0],[0,0,1],[1,1,0]] 输出:2 解释:翻转前两列的值之后,后两行由相等的值组成。...解题 一开始想是不是动态规划 看答案是找最多出现的模式,如11011,00100,反转第3列后变成11111,00000,都是1或者0 那把0开头的或者1开头的,选一种,全部翻转,用哈希表计数,找到最多出现的

    2.1K20

    用 Pandas 进行数据处理系列 二

    a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values...df.set_index('id') 按照特定列的值排序 df.sort_values(by=['age']) 按照索引列排序 df.sort_index() 如果 pr 列的值大于 3000 , group...,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和...= 'beijing'), ['id', 'city', 'age']].sort(['id']) 筛选后的灵气按 city 列进行计数 df.loc[(df['city'] !...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby

    8.2K30

    超全的pandas数据分析常用函数总结:下篇

    5.3 按照特定列的值排序: 按照索引列进行排序: data.sort_index() 按照money的值进行排序: data.sort_values(by="money",ascending = True...数据提取 下面这部分会比较绕: loc函数按标签值进行提取,iloc按位置进行提取pandas.DataFrame.loc() 允许输入的值: 单个标签,例如5或’a’,(请注意,5被解释为索引的标签,...7.3 对结果进行计数求和 data.query('department=="饮料"').count() # 对饮料类型的数据进行筛选后计数 data.query('department...数据汇总 8.1 以department属性对所有列进行计数汇总 data.groupby("department").count() 输出结果: ?...8.2 以department属性分组之后,对id字段进行计数汇总 data.groupby("department")['id'].count() 输出结果: ?

    5K20
    领券