首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    SciPy 稀疏矩阵(3):DOK

    散列表(Hash Table)是一种非常重要的数据结构,它允许我们根据键(Key)直接访问在内存存储位置的数据。这种数据结构是一种特殊类型的关联数组,对于每个键都存在一个唯一的值。它被广泛应用于各种程序设计和应用中,扮演着关键的角色。散列表的主要优点是查找速度快,因为每个元素都存储了它的键和值,所以我们可以直接访问任何元素,无论元素在数组中的位置如何。这种直接访问的特性使得散列表在处理查询操作时非常高效。因此,无论是进行数据检索、缓存操作,还是实现关联数组,散列表都是一种非常有用的工具。这种高效性使得散列表在需要快速查找和访问数据的场景中特别有用,比如在搜索引擎的索引中。散列表的基本实现涉及两个主要操作:插入(Insert)和查找(Lookup)。插入操作将一个键值对存储到散列表中,而查找操作则根据给定的键在散列表中查找相应的值。这两种操作都是 O(1) 时间复杂度,这意味着它们都能在非常短的时间内完成。这种时间复杂度在散列表与其他数据结构相比时,如二分搜索树或数组,显示出显著的优势。然而,为了保持散列表的高效性,我们必须处理冲突,即当两个或更多的键映射到同一个内存位置时。这是因为在散列表中,不同的键可能会被哈希到同一位置。这是散列表实现中的一个重要挑战。常见的冲突解决方法有开放寻址法和链地址法。开放寻址法是一种在散列表中解决冲突的方法,其中每个单元都存储一个键值对和一个额外的信息,例如,计数器或下一个元素的指针。当一个元素被插入到散列表中时,如果当前位置已经存在另一个元素,那么下一个空闲的单元将用于存储新的元素。然而,这个方法的一个缺点是,在某些情况下,可能会产生聚集效应,导致某些单元过于拥挤,而其他单元过于稀疏。这可能会降低散列表的性能。链地址法是一种更常见的解决冲突的方法,其中每个单元都存储一个链表。当一个元素被插入到散列表中时,如果当前位置已经存在另一个元素,那么新元素将被添加到链表的末尾。这种方法的一个优点是它能够处理更多的冲突,而且不会产生聚集效应。然而,它也有一个缺点,那就是它需要更多的空间来存储链表。总的来说,散列表是一种非常高效的数据结构,它能够快速地查找、插入和删除元素。然而,为了保持高效性,我们需要处理冲突并采取一些策略来优化散列表的性能。例如,我们可以使用再哈希(rehashing)技术来重新分配键,以更均匀地分布散列表中的元素,减少聚集效应。还可以使用动态数组或链表等其他数据结构来更好地处理冲突。这些优化策略可以显著提高散列表的性能,使其在各种应用中更加高效。

    05

    【文章】数据库非共享集群性能测试方法研究

    目前,随着大型决策支持系统的发展,其支撑数据库的执行效率已经成为制约整个企业信息系统性能和效率提升的瓶颈。[1]尤其在电子商务领域,联机事务分析(OLAP)应用越来越广泛,对性能的要求也越发紧迫。联机事务分析是以多维度的方式分析数据,能弹性地提供积存、下钻和枢纽分析等操作,呈现集成性决策信息的方法。其目前主要处理兆兆(T)字节的数据,满足复杂的查询需求,尤其是对多张表中的千万条记录的数据进行数据分析和信息综合。而目前上述需求在关系数据库中已经不能完全的得到满足。[2]同时,商业应用领域对性能、可靠性和性价比的苛刻要求,催生了数据库集群的广泛应用[3]。数据库集群分为共享集群和非共享集群,而针对决策支持系统的业务处理,非共享集群有其固有的优势。[4]

    02

    C语言 逻辑量、逻辑运算符和逻辑表达式、if语句和switch语句

    1.逻辑量的真假判定──0和非0 C语言用整数"1"表示"逻辑真"、用"0"表示"逻辑假"。但在判断一个数据的"真"或"假"时,却以0和非0为根据:如果为0,则判定为"逻辑假";如果为非0,则判定为"逻辑真"。 例如,假设num=12,则: !num的值=0 ,num>=1 && num<=31的值=1 ,num || num>31的值=1。 2.说明 (1)逻辑运算符两侧的操作数,除可以是0和非0的整数外,也可以是其它任何类型的数据,如实型、字符型等。 (2)在计算逻辑表达式时,只有在必须执行下一个表达式才能求解时,才求解该表达式(即并不是所有的表达式都被求解)。换句话说: 1)对于逻辑与运算,如果第一个操作数被判定为"假",系统不再判定或求解第二操作数。 2)对于逻辑或运算,如果第一个操作数被判定为"真",系统不再判定或求解第二操作数。

    02
    领券