首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    重要岗位人员脱岗预警 脱岗监测预警算法

    重要岗位人员脱岗预警 脱岗监测预警算法通过yolov8网络模型深度学习算法,重要岗位人员脱岗预警 脱岗监测预警算法对现场人员行为进行实时监测和识别,通过算法识别脱岗、睡岗和玩手机等异常行为,实现对人员行为的预警和告警。重要岗位人员脱岗预警 脱岗监测预警算法用到的YOLOv8是目前YOLO系列算法中最新推出的检测算法,YOLOv8可以完成检测、分类、分割任务。YOLOv8 与YOLOv5出自同一个团队,是一款前沿、最先进(SOTA)的模型,基于先前 YOLOv5版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

    02

    舆情分析系统技术解决方案及作用论文_网络舆情解决方案

    网络舆情分析工作的开展最先需要做好的就是网络舆情的搜集工作,由于互联网信息内容庞杂多样,舆情信息搜集起来困难,所以要进行舆情分析更是难上加难。但若舆情信息收集的不全,就极易导致舆情分析不正确。那么,到底舆情分析工作要怎么做呢? 针对此问题,提供了以下舆情分析系统技术解决方案,供各位参考。在了解方案的前,先来说说为什么要采用舆情分析系统进行监测分析。 一、使用舆情分析系统进行监测分析的意义 网络信息化时代,信息数据量庞大,若一味采用人工进行舆情信息分析,容易出现收集的舆情不全、舆情分析不正确等问题。而通过利用智能化的舆情分析系统进行监测分析,可对网络舆情的走向与信息内容进行实时监测分析,并生成详细的分析数据,为舆情分析报告的制定提供数据支撑。 二、舆情分析系统技术方案 舆情分析系统从数据监测搜集到分析总共分为三大模块,分别是舆情监测搜集、敏感话题预警、舆情趋势分析。 1. 舆情监测搜集 可自定义监测分析的目标、主题或者关键词,系统会根据设置的监测内容,实时对全网平台与之相关的舆情信息进行7*24小时监测和搜集。 2.敏感话题预警 通过利用蚁坊软件的舆情分析系统可对与己相关的话题进行倾向性分析和主题跟踪,一旦识别为敏感话题,系统会自动以短信、微信、邮件等方式进行预警,并对各类主题,各类倾向能够形成自动摘要。 3.舆情趋势分析 可分析某个主题在不同的时间段内,人们所关注的程度以及对突发事件进行跨时间、跨空间综合分析,获知事件发生的全貌并预测事件发展的趋势,并生成数据分析图表和舆情分析简报,支持一键导出。

    03

    高校个人信息泄露问题安恒信息能帮到你!

    近日,澎湃新闻连续披露了全国各省份多所高校官网存在泄露学生个人信息的情况,这些高校在公示受助学生信息时,包含了身份证号码、银行卡号等个人信息。针对这种现象,全国学生资助管理中心已督促部分学校进行整改,并发布了《全国学生资助管理中心第9号预警:保护学生个人信息和隐私,要“拧紧这根弦”》。此外,针对教育行业信息安全问题,教育部已经在今年初发布了《关于教育部展开信息安全专项行动的建议》,并且全国教育系统已经有条不紊地在进行僵尸网站、黑站、伪造网站、网站漏洞等专项筛查,各省信息中心、各高校安全防御措施建设、建立情报

    05

    邮箱安全第7期 | 邮箱大数据分析平台与异常预警模型

    上一期我们谈到通过WEB应用防火墙技术来防护邮箱系统自身的安全问题,由此解决了应用层防护不当导致的邮箱系统被黑客技术入侵的问题,本期我们介绍针对邮箱系统整体大数据审计分析平台的架构部署平台的技术架构以及邮件内容的异常分析。通过本期的介绍您将了解到邮箱大数据处理的全生命周期以及技术架构,另外,了解如何对邮箱业务异常进行基本的判断。 01 邮箱大数据分析处理过程 大数据中心重点实现企业网络环境安全类、管理类、流量数据以及资产、用户的基本数据的采集。数据采集层实现全流量审计引擎、日志采集引擎和资产、用户数据的

    010

    工厂机械臂人员闯入自动预警

    工厂机械臂人员闯入自动预警算法通过yolov8系列网络模型深度学习算法,工厂机械臂人员闯入自动预警算法实时监测工作区域内的人员位置和机械臂设备的运行状态,实现对人员闯入的识别和预警。一旦系统检测到人员闯入作业区域,立即发出警报并同步停止机械臂设备的工作,以避免发生意外。YOLOv8 与YOLOv5出自同一个团队,是一款前沿、最先进(SOTA)的模型,基于先前 YOLOv5版本的成功,工厂机械臂人员闯入自动预警算法引入了新功能和改进,进一步提升性能和灵活性。YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

    01

    校园安全Ai视频分析预警算法

    校园安全Ai视频分析预警算法通过yolov5+python深度学习算法网络模型,校园安全Ai视频分析预警算法对学生的行为进行智能监测和预警如识别学生打架斗殴、抽烟、翻墙、倒地以及异常聚集等行为,及时发出预警通知。校园安全Ai视频分析预警算法YOLO模型的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,YOLO的整个结构就是输入图片经过神经网络的变换得到一个输出的张量。

    01
    领券