首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    论文阅读---Reducing the Dimensionality of Data with Neural Networks

    通过训练多层神经网络可以将高维数据转换成低维数据,其中有对高维输入向量进行改造的网络层。梯度下降可以用来微调如自编码器网络的权重系数,但是对权重的初始化要求比较高。这里提出一种有效初始化权重的方法,允许自编码器学习低维数据,这种降维方式比PCA表现效果更好。 降维有利于高维数据的分类、可视化、通信和存储。简单而普遍使用的降维方法是PCA(主要成分分析)--首先寻找数据集中方差最大的几个方向,然后用数据点在方向上的坐标来表示这条数据。我们将PCA称作一种非线性生成方法,它使用适应性的、多层“编码”网络将

    04

    微软团队发布第一个基于AI的天气和气候基础模型 ClimaX

    编辑 | 萝卜皮 大多数最先进的天气和气候建模方法都是基于大气的物理学数值模型。这些方法旨在模拟非线性动力学和多个变量之间的复杂相互作用,这些变量很难近似。此外,许多此类数值模型的计算量很大,尤其是在以细粒度的空间和时间分辨率对大气现象进行建模时。 近期基于机器学习的数据驱动方法,旨在通过使用深度神经网络学习数据驱动的函数映射,来直接解决下游预测或投影任务。然而,这些网络是使用针对特定时空任务的精选和同质气候数据集进行训练的,因此缺乏数值模型的通用性。 微软自主系统与机器人研究小组以及微软研究院科学智能中

    02

    每日论文速递 | 【ICLR24】用语言模型预测表格Tabular

    摘要:深度神经网络(DNNs)的可迁移性在图像和语言处理领域取得了显著进展。然而,由于表格之间的异构性,这种DNN的优势在表格数据预测(例如回归或分类任务)方面仍未充分利用。语言模型(LMs)通过从不同领域提炼知识,具有理解来自各种表格的特征名称的能力,有望成为在不同表格和多样化预测任务之间转移知识的多才多艺的学习者,但它们的离散文本表示空间与表格中的数值特征值不兼容。在本文中,我们介绍了TP-BERTa,这是一个专门针对表格数据预测进行预训练的LM模型。具体而言,一种新颖的相对大小标记化将标量数值特征值转换为精细离散的高维标记,而一种内部特征注意方法则将特征值与相应的特征名称集成在一起。全面的实验证明,我们的预训练TP-BERTa在表格DNNs中表现出色,并且在典型的表格数据领域与梯度提升决策树模型相竞争。

    01

    Spread for Windows Forms快速入门(4)---常用的单元格类型(上)

    单元格类型定义了在单元格中呈现的信息的类型,以及这种信息如何显示,用户如何与其进行交互。单元格类型可以被赋给单个的单元格,整行或者整列。 用户可以使用两种不同的单元格类型对表单中的单元格进行设置: 一种是可以简单地关联于单元格的文本格式,另一种就是显示控件或者图形化信息。我们在本篇介绍常用的文本单元格类型,下一篇介绍常用的图形单元格类型。 通用单元格GeneralCellType 对于表单中的单元格而言,通用单元格是默认的单元格类型。 除非你指定了其他的单元格类型,控件通常会默认将通用单元格类型赋给单元格。

    06

    【GPT总结】Why Can GPT Learn In-Context?

    这篇论文提出了一种新的方法,利用大型预训练语言模型展示了惊人的上下文学习能力。通过少量的示范输入-标签对,它们可以在没有参数更新的情况下预测未见输入的标签。尽管在性能上取得了巨大成功,但其工作机制仍然是一个开放问题。在这篇论文中,作者将语言模型解释为元优化器,并将上下文学习理解为隐式微调。在理论上,他们发现Transformer的注意力具有梯度下降的双重形式。基于此,他们将上下文学习理解为以下过程:GPT首先根据示范示例生成元梯度,然后将这些元梯度应用于原始的GPT以构建一个ICL模型。通过在真实任务上全面比较上下文学习和显式微调的行为,提供了支持我们理解的实证证据。实验结果表明,从多个角度来看,上下文学习的行为与显式微调类似。受Transformer注意力和梯度下降之间的双重形式启发,作者设计了一种基于动量的注意力机制,类比于带有动量的梯度下降。改进后的性能进一步支持了我们的理解,更重要的是,展示了利用我们的理解进行未来模型设计的潜力。该论文的代码可在\url{https://aka.ms/icl}上找到。

    01
    领券